216 research outputs found

    Trypsin Inhibitor. V. Nutritive Value of Treated Soybean Oil Meal and Some Characteristics of the Trypsin Inhibitor in Soybeans

    Get PDF
    The marked improvement in the apparent nutritive value of soybean protein after heating has long been recognized. The fundamental cause of this improvement has never been fully understood. Furthermore, commercial soybean oil meal varies considerably in nutritive value although heat treatment is common in most processing plants. Since heating is generally regarded as deleterious to the nutritive quality of protein, the following investigations of various treatments of soybean oil meal are of particular importance in developing a soybean or soybean oil meal of maximum and uniform nutritive value

    Trypsin Inhibitor. V. Nutritive Value of Treated Soybean Oil Meal and Some Characteristics of the Trypsin Inhibitor in Soybeans

    Get PDF
    The marked improvement in the apparent nutritive value of soybean protein after heating has long been recognized. The fundamental cause of this improvement has never been fully understood. Furthermore, commercial soybean oil meal varies considerably in nutritive value although heat treatment is common in most processing plants. Since heating is generally regarded as deleterious to the nutritive quality of protein, the following investigations of various treatments of soybean oil meal are of particular importance in developing a soybean or soybean oil meal of maximum and uniform nutritive value

    Perfusion defect size predicts engraftment but not early retention of intra-myocardially injected cardiosphere-derived cells after acute myocardial infarction

    Get PDF
    Therapeutic cell retention and engraftment are critical for myocardial regeneration. Underlying mechanisms, including the role of tissue perfusion, are not well understood. In Wistar Kyoto rats, syngeneic cardiosphere-derived cells (CDCs) were injected intramyocardially, after experimental myocardial infarction. CDCs were labeled with [18F]-FDG (n = 7), for quantification of 1-h retention, or with sodium-iodide-symporter gene (NIS; n = 8), for detection of 24-h engraftment by reporter imaging. Perfusion was imaged simultaneously. Infarct size was 37 ± 9 and 38 ± 9% of LV in FDG and NIS groups. Cell signal was located in the infarct border zone in all animals. No significant relationship was observed between infarct size and 1-h CDC retention (r = −0.65; P = 0.11). However, infarct size correlated significantly with 24-h engraftment (r = 0.75; P = 0.03). Residual perfusion at the injection site was not related to cell retention/engraftment. Larger infarcts are associated with improved CDC engraftment. This observation encourages further investigation of microenvironmental conditions after ischemic damage and their role in therapeutic cell survival

    Characteristics and outcome of pediatric renal cell carcinoma patients registered in the International Society of Pediatric Oncology (SIOP) 93‐01, 2001 and UK‐IMPORT database: A report of the SIOP‐Renal Tumor Study Group

    Get PDF
    In children, renal cell carcinoma (RCC) is rare. This study is the first report of pediatric patients with RCC registered by the International Society of Pediatric Oncology‐Renal Tumor Study Group (SIOP‐RTSG). Pediatric patients with histologically confirmed RCC, registered in SIOP 93‐01, 2001 and UK‐IMPORT databases, were included. Event‐free survival (EFS) and overall survival (OS) were analyzed using the Kaplan‐Meier method. Between 1993 and 2019, 122 pediatric patients with RCC were registered. Available detailed data (n = 111) revealed 56 localized, 30 regionally advanced, 25 metastatic and no bilateral cases. Histological classification according to World Health Organization 2004, including immunohistochemical and molecular testing for transcription factor E3 (TFE3) and/or EB (TFEB) translocation, was available for 65/122 patients. In this group, the most common histological subtypes were translocation type RCC (MiT‐RCC) (36/64, 56.3%), papillary type (19/64, 29.7%) and clear cell type (4/64, 6.3%). One histological subtype was not reported. In the remaining 57 patients, translocation testing could not be performed, or TFE‐cytogenetics and/or immunohistochemistry results were missing. In this group, the most common RCC histological subtypes were papillary type (21/47, 44.7%) and clear cell type (11/47, 23.4%). Ten histological subtypes were not reported. Estimated 5‐year (5y) EFS and 5y OS of the total group was 70.5% (95% CI = 61.7%‐80.6%) and 84.5% (95% CI = 77.5%‐92.2%), respectively. Estimated 5y OS for localized, regionally advanced, and metastatic disease was 96.8%, 92.3%, and 45.6%, respectively. In conclusion, the registered pediatric patients with RCC showed a reasonable outcome. Survival was substantially lower for patients with metastatic disease. This descriptive study stresses the importance of full, prospective registration including TFE‐testing

    Ischemia-Reperfusion Injury and Pregnancy Initiate Time-Dependent and Robust Signs of Up-Regulation of Cardiac Progenitor Cells

    Get PDF
    To explore how cardiac regeneration and cell turnover adapts to disease, different forms of stress were studied for their effects on the cardiac progenitor cell markers c-Kit and Isl1, the early cardiomyocyte marker Nkx2.5, and mast cells. Adult female rats were examined during pregnancy, after myocardial infarction and ischemia-reperfusion injury with/out insulin like growth factor-1(IGF-1) and hepatocyte growth factor (HGF). Different cardiac sub-domains were analyzed at one and two weeks post-intervention, both at the mRNA and protein levels. While pregnancy and myocardial infarction up-regulated Nkx2.5 and c-Kit (adjusted for mast cell activation), ischemia-reperfusion injury induced the strongest up-regulation which occurred globally throughout the entire heart and not just around the site of injury. This response seems to be partly mediated by increased endogenous production of IGF-1 and HGF. Contrary to c-Kit, Isl1 was not up-regulated by pregnancy or myocardial infarction while ischemia-reperfusion injury induced not a global but a focal up-regulation in the outflow tract and also in the peri-ischemic region, correlating with the up-regulation of endogenous IGF-1. The addition of IGF-1 and HGF did boost the endogenous expression of IGF and HGF correlating to focal up-regulation of Isl1. c-Kit expression was not further influenced by the exogenous growth factors. This indicates that there is a spatial mismatch between on one hand c-Kit and Nkx2.5 expression and on the other hand Isl1 expression. In conclusion, ischemia-reperfusion injury was the strongest stimulus with both global and focal cardiomyocyte progenitor cell marker up-regulations, correlating to the endogenous up-regulation of the growth factors IGF-1 and HGF. Also pregnancy induced a general up-regulation of c-Kit and early Nkx2.5+ cardiomyocytes throughout the heart. Utilization of these pathways could provide new strategies for the treatment of cardiac disease

    Inefficient purifying selection: the mammalian Y chromosome in the rodent genus Mus

    Full text link
    Two related genes with potentially similar functions, one on the Y chromosome and one on the X chromosome, were examined to determine if they evolved differently because of their chromosomal positions. Six hundred fifty-seven base pairs of coding sequence of Jarid1d ( Smcy ) on the Y chromosome and Jarid1c ( Smcx ) on the X chromosome were sequenced in 13 rodent taxa. An analysis of replacement and silent substitutions, using a counting method designed for samples with small evolutionary distances, showed a significant difference between the two genes. The different patterns of replacement and silent substitutions within Jarid1d and Jarid1c may be a result of evolutionary mechanisms that are particularly strong on the Y chromosome because of its unique properties. These findings are similar to results of previous studies of Y chromosomal genes in these and other mammalian taxa, suggesting that genes on the mammalian Y evolve in a chromosome-specific manner.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46987/1/335_2005_Article_50.pd
    corecore