3,209 research outputs found
Effect of stoichiometry on oxygen incorporation in MgB2 thin films
The amount of oxygen incorporated into MgB2 thin films upon exposure to
atmospheric gasses is found to depend strongly on the material's stoichiometry.
Rutherford backscattering spectroscopy was used to monitor changes in oxygen
incorporation resulting from exposure to: (a) ambient atmosphere, (b) humid
atmospheres, (c) anneals in air and (d) anneals in oxygen. The study
investigated thin-film samples with compositions that were systematically
varied from Mg0.9B2 to Mg1.1B2. A significant surface oxygen contamination was
observed in all of these films. The oxygen content in the bulk of the film, on
the other hand, increased significantly only in Mg rich films and in films
exposed to humid atmospheres.Comment: 10 pages, 6 figures, 1 tabl
The Reactivity of MgB2 with Common Substrate and Electronic Materials
The reactivity of MgB2 with powdered forms of common substrate and electronic
materials is reported. Reaction temperatures between 600 C and 800 C,
encompassing the range commonly employed in thin-film fabrication, were
studied. The materials tested for reactivity were ZrO2, yttria stabilized
zirconia (YSZ), MgO, Al2O3, SiO2, SrTiO3, TiN, TaN, AlN, Si, and SiC. At 600 C,
MgB2 reacted only with SiO2 and Si. At 800 C, however, reactions were observed
for MgB2 with Al2O3, SiO2, Si, SiC, and SrTiO3. The Tc of MgB2 decreased in the
reactions with SiC and Al2O3.Comment: 5 figure
MgB2 tunnel junctions with native or thermal oxide barriers
MgB2 tunnel junctions (MgB2/barrier/MgB2) were fabricated using a native
oxide grown on the bottom MgB2 film as the tunnel barrier. Such barriers
therefore survive the deposition of the second electrode at 300oC, even over
junction areas of ~1 mm2. Studies of such junctions, and those of the type
MgB2/native or thermal oxide/metal (Pb, Au, or Ag) show that tunnel barriers
grown on MgB2 exhibit a wide range of barrier heights and widths.Comment: 9 pages, 3 figure
Swelling of acetylated wood in organic liquids
To investigate the affinity of acetylated wood for organic liquids, Yezo
spruce wood specimens were acetylated with acetic anhydride, and their swelling
in various liquids were compared to those of untreated specimens. The
acetylated wood was rapidly and remarkably swollen in aprotic organic liquids
such as benzene and toluene in which the untreated wood was swollen only
slightly and/or very slowly. On the other hand, the swelling of wood in water,
ethylene glycol and alcohols remained unchanged or decreased by the
acetylation. Consequently the maximum volume of wood swollen in organic liquids
was always larger than that in water. The effect of acetylation on the maximum
swollen volume of wood was greater in liquids having smaller solubility
parameters. The easier penetration of aprotic organic liquids into the
acetylated wood was considered to be due to the scission of hydrogen bonds
among the amorphous wood constituents by the substitution of hydroxyl groups
with hydrophobic acetyl groups.Comment: to be published in J Wood Science (Japanese wood research society
Flame-Retardant Treatment Of Wood With A Diisocyanate and An Oligomer Phosphonate
An oligomer phosphonate and isophorone diisocyanate, in a chloroform or dichloromethane solution, were impregnated into wood and cured at 105 C. The leach resistance and thermal degradation of treated wood specimens were evaluated. Leaching milled specimens removed up to 49% of the phosphorus and 12% of the nitrogen. The average weight percent gain of solid specimens leached with three 4-day cycles of running water was reduced from 23% to 17% during the first cycle and from 17% to 16% during the second and third cycles. Toluene: ethanol extraction did not remove the reacted chemicals from the wood. Acetone extraction resulted in a 1% to 2% reduction of the weight percent gain values. Thermal analysis showed that the flame-retardant treatment reduced the temperature at maximum rate of pyrolysis approximately 80 C and increased the amount of residual char to about 30%. Leaching raised the temperature on the average 8 C at the maximum rate of pyrolysis and decreased the amount of residual char an average of 3%. The temperature at maximum rate of pyrolysis and amount of residual char indicate the potential effectiveness of this treatment as a leach-resistant, flame-retardant treatment for wood
Dynamic Spin-Polarized Resonant Tunneling in Magnetic Tunnel Junctions
Precisely engineered tunnel junctions exhibit a long sought effect that
occurs when the energy of the electron is comparable to the potential energy of
the tunneling barrier. The resistance of metal-insulator-metal tunnel junctions
oscillates with an applied voltage when electrons that tunnel directly into the
barrier's conduction band interfere upon reflection at the classical turning
points: the insulator-metal interface, and the dynamic point where the incident
electron energy equals the potential barrier inside the insulator. A model of
tunneling between free electron bands using the exact solution of the
Schroedinger equation for a trapezoidal tunnel barrier qualitatively agrees
with experiment.Comment: 4pgs, 3 fig
Spontaneous Fluxon Production in Annular Josephson Tunnel Junctions in the Presence of a Magnetic Field
We report on the spontaneous production of fluxons in the presence of a
symmetry-breaking magnetic field for annular Josephson tunnel junctions during
a thermal quench. The dependence on field intensity of the probability
to trap a single defect during the N-S phase transition drastically
depends on the sample circumferences. We show that the data can be understood
in the framework of the Kibble-Zurek picture of spontaneous defect formation
controlled by causal bounds.Comment: Submitted to Phys. Rev. B with 5 figures on Nov. 15, 200
Zurek-Kibble Mechanism for the Spontaneous Vortex Formation in Josephson Tunnel Junctions: New Theory and Experiment
New scaling behavior has been both predicted and observed in the spontaneous
production of fluxons in quenched annular Josephson tunnel
junctions as a function of the quench time, . The probability
to trap a single defect during the N-S phase transition clearly follows an
allometric dependence on with a scaling exponent , as
predicted from the Zurek-Kibble mechanism for {\it realistic} JTJs formed by
strongly coupled superconductors. This definitive experiment replaces one
reported by us earlier, in which an idealised model was used that predicted
, commensurate with the then much poorer data. Our experiment
remains the only condensed matter experiment to date to have measured a scaling
exponent with any reliability.Comment: Four pages, one figur
- …