172 research outputs found

    Temperature-induced pair correlations in clusters and nuclei

    Get PDF
    The pair correlations in mesoscopic systems such as nmnm-size superconducting clusters and nuclei are studied at finite temperature for the canonical ensemble of fermions in model spaces with a fixed particle number: i) a degenerate spherical shell (strong coupling limit), ii) an equidistantly spaced deformed shell (weak coupling limit). It is shown that after the destruction of the pair correlations at T=0 by a strong magnetic field or rapid rotation, heating can bring them back. This phenomenon is a consequence of the fixed number of fermions in the canonical ensemble

    Effects of Spin-Orbit Interactions on Tunneling via Discrete Energy Levels in Metal Nanoparticles

    Full text link
    The presence of spin-orbit scattering within an aluminum nanoparticle affects measurements of the discrete energy levels within the particle by (1) reducing the effective g-factor below the free-electron value of 2, (2) causing avoided crossings as a function of magnetic field between predominantly-spin-up and predominantly-spin-down levels, and (3) introducing magnetic-field-dependent changes in the amount of current transported by the tunneling resonances. All three effects can be understood in a unified fashion by considering a simple Hamiltonian. Spin-orbit scattering from 4% gold impurities in superconducting aluminum nanoparticles produces no dramatic effect on the superconducting gap at zero magnetic field, but we argue that it does modify the nature of the superconducting transition in a magnetic field.Comment: 10 pages, 5 figures. Submitted to Phys. Rev.

    Random Matrix Model for Superconductors in a Magnetic Field

    Full text link
    We introduce a random matrix ensemble for bulk type-II superconductors in the mixed state and determine the single-particle excitation spectrum using random matrix theory. The results are compared with planar tunnel junction experiments in PbBi thin films. More low energy states appear than in the Abrikosov-Gor'kov-Maki or Ginzburg-Landau descriptions, consistent with observations.Comment: 4 pages, 1 postscript figure, to appear in Phys. Rev. Let

    Resonant Magnetization Tunneling in Mn12 Acetate: The Absence of Inhomogeneous Hyperfine Broadening

    Full text link
    We present the results of a detailed study of the thermally-assisted-resonant-tunneling relaxation rate of Mn12 acetate as a function of an external, longitudinal magnetic field and find that the data can be fit extremely well to a Lorentzian function. No hint of inhomogeneous broadening is found, even though some is expected from the Mn nuclear hyperfine interaction. This inconsistency implies that the tunneling mechanism cannot be described simply in terms of a random hyperfine field.Comment: Some minor revisions, title changed, updated figures, two added notes, one added reference. RevTeX, 4 pages, 3 postscript figures. Submitted to Rapid Communication

    Cold extremities in migraine: a marker for vascular dysfunction in women

    Get PDF
    Background and purpose: Migraine is recognized as a vascular risk factor, especially in women. Presumably, migraine, stroke and cardiovascular events share pathophysiological mechanisms. Self-reported cold extremities were investigated as a marker for vascular dysfunction in migraine. Secondly, it was hypothesized that suffering from cold extremities affects sleep quality, possibly exacerbating migraine attack frequency. Methods: In this case–control study, a random sample of 1084 migraine patients and 348 controls (aged 22–65 years) from the LUMINA migraine cohort were asked to complete questionnaires concerning cold extremities, sleep quality and migraine. Results: A total of 594 migraine patients and 199 controls completed the questionnaires. In women, thermal discomfort and cold extremities (TDCE) were more often reported by migraineurs versus controls (odds ratio 2.3, 95% confidence interval 1.4–3.7; P < 0.001), but not significantly so in men (odds ratio 2.5, 95% confidence interval 0.9–6.9; P = 0.09). There was no difference in TDCE comparing migraine with or without aura. Female migraineurs who reported TDCE had higher attack frequencies compared to female migraineurs without TDCE (4 vs. 3 attacks per month; P = 0.003). The association between TDCE and attack frequency was mediated by the presence of difficulty initiating sleep (P = 0.02). Conclusion: Women with migraine more often reported cold extremities compared with controls, possibly indicating a sex-specific vascular vulnerability. Female migraineurs with cold extremities had higher attack frequencies, partly resulting from sleep disturbances. Future studies need to demonstrate whether cold extremities in female migraineurs are a predictor for cardiovascular and cerebrovascular events

    Magnetization of Mn_12 Ac in a slowly varying magnetic field: an ab initio study

    Full text link
    Beginning with a Heisenberg spin Hamiltonian for the manganese ions in the Mn_12 Ac molecule, we find a number of low-energy states of the system. We use these states to solve the time-dependent Schrodinger equation and find the magnetization of the molecule in the presence of a slowly varying magnetic field. We study the effects of the field sweep rate, fourth order anisotropic spin interactions and a transverse field on the weights of the different states as well as the magnetization steps which are known to occur in the hysteresis plots in this system. We find that the fourth order term and a slow field sweep rate are crucial for obtaining prominent steps in magnetization in the hysteresis plots.Comment: LaTeX, 11 pages, 12 eps figure

    High frequency resonant experiments in Fe8_8 molecular clusters

    Full text link
    Precise resonant experiments on Fe8_{8} magnetic clusters have been conducted down to 1.2 K at various tranverse magnetic fields, using a cylindrical resonator cavity with 40 different frequencies between 37 GHz and 110 GHz. All the observed resonances for both single crystal and oriented powder, have been fitted by the eigenstates of the hamiltonian H=−DSz2+ESx2−gÎŒBH⋅S{\cal H}=-DS_z^2+ES_x^2-g\mu_B{\bf H}\cdot {\bf S}. We have identified the resonances corresponding to the coherent quantum oscillations for different orientations of spin S = 10.Comment: to appear in Phys.Rev. B (August 2000

    Characterization of the S = 9 excited state in Fe8Br8 by Electron Paramagnetic Resonance

    Full text link
    High Frequency electron paramagnetic resonance has been used to observe the magnetic dipole, Δ\Delta Ms_s = ±\pm 1, transitions in the S=9S = 9 excited state of the single molecule magnet Fe8_8Br8_8. A Boltzmann analysis of the measured intensities locates it at 24 ±\pm 2 K above the S=10S = 10 ground state, while the line positions yield its magnetic parameters D = -0.27 K, E = ±\pm0.05 K, and B40_4^0 = -1.3×\times 10−6^{-6} K. D is thus smaller by 8% and E larger by 7% than for S=10S = 10. The anisotropy barrier for S=9S = 9 is estimated as 22 K,which is 25% smaller than that for S=10S = 10 (29 K). These data also help assign the spin exchange constants(J's) and thus provide a basis for improved electronic structure calculations of Fe8_8Br8_8.Comment: 7 pages, Figs included in text, submitted to PR

    Thermodynamic properties of a small superconducting grain

    Full text link
    The reduced BCS Hamiltonian for a metallic grain with a finite number of electrons is considered. The crossover between the ultrasmall regime, in which the level spacing, dd, is larger than the bulk superconducting gap, Δ\Delta, and the small regime, where Δ≳d\Delta \gtrsim d, is investigated analytically and numerically. The condensation energy, spin magnetization and tunneling peak spectrum are calculated analytically in the ultrasmall regime, using an approximation controlled by 1/ln⁥N1/\ln N as small parameter, where NN is the number of interacting electron pairs. The condensation energy in this regime is perturbative in the coupling constant λ\lambda, and is proportional to dNλ2=λ2ωDd N \lambda^2 = \lambda^2 \omega_D. We find that also in a large regime with Δ>d\Delta>d, in which pairing correlations are already rather well developed, the perturbative part of the condensation energy is larger than the singular, BCS, part. The condition for the condensation energy to be well approximated by the BCS result is found to be roughly Δ>dωD\Delta > \sqrt{d \omega_D}. We show how the condensation energy can, in principle, be extracted from a measurement of the spin magnetization curve, and find a re-entrant susceptibility at zero temperature as a function of magnetic field, which can serve as a sensitive probe for the existence of superconducting correlations in ultrasmall grains. Numerical results are presented which suggest that in the large NN limit the 1/N correction to the BCS result for the condensation energy is larger than Δ\Delta.Comment: 17 pages, 7 figures, Submitted to Phys. Rev.

    Rough droplet model for spherical metal clusters

    Full text link
    We study the thermally activated oscillations, or capillary waves, of a neutral metal cluster within the liquid drop model. These deformations correspond to a surface roughness which we characterize by a single parameter Δ\Delta. We derive a simple analytic approximate expression determining Δ\Delta as a function of temperature and cluster size. We then estimate the induced effects on shell structure by means of a periodic orbit analysis and compare with recent data for shell energy of sodium clusters in the size range 50<N<25050 < N < 250. A small surface roughness Δ≃0.6\Delta\simeq 0.6 \AA~ is seen to give a reasonable account of the decrease of amplitude of the shell structure observed in experiment. Moreover -- contrary to usual Jahn-Teller type of deformations -- roughness correctly reproduces the shape of the shell energy in the domain of sizes considered in experiment.Comment: 20 pages, 4 figures, important modifications of the presentation, to appear in Phys. Rev.
    • 

    corecore