6,934 research outputs found
Supersymmetric 3-3-1 model with right-handed neutrinos
We consider the supersymmetric extension of the 3-3-1 model with right-handed
neutrinos. We study the mass spectra in the scalar and pseudoscalar sectors,
and for a given set of the input parameters, we find that the lightest scalar
in the model has a mass of 130 GeV and the lightest pseudoscalar has mass of 5
GeV. However, this pseudoscalar decouples from the at high energy scales
since it is almost a singlet under .Comment: Revtex4, 16 pages, no figure
Symmetry breaking and clustering in a vibrated granular gas with several macroscopically connected compartments
The spontaneous symmetry breaking in a vibro-fluidized low-density granular
gas in three connected compartments is investigated. When the total number of
particles in the system becomes large enough, particles distribute themselves
unequally among the three compartments. Particles tend to concentrate in one of
the compartments, the other two having the (relatively small) same average
number of particles. A hydrodynamical model that accurately predicts the
bifurcation diagram of the system is presented. The theory can be easily
extended to the case of an arbitrary number of connected compartments
Conformal mapping of ultrasonic crystals: confining ultrasound and cochlear-like wave guiding
Conformal mapping of a slab of a two-dimensional ultrasonic crystal generate
a closed geometrical arrangement of ultrasonic scatterers with appealing
acoustic properties. This acoustic shell is able to confine ultrasonic modes.
Some of these internal resonances can be induced from an external wave source.
The mapping of a linear defect produces a wave-guide that exhibits a
spatial-frequency selection analogous to that characteristic of a synthetic
"cochlea". Both, experimental and theoretical results are reported here.Comment: 4 pages, 4 figure
Hydrodynamic Character of the Non-equipartition of Kinetic Energy in Binary Granular Gases
The influence of the heating mechanism on the kinetic energy densities of the
components of a vibrated granular mixture is investigated. Collisions of the
particles with the vibrating wall are inelastic and characterized by two
coefficients of normal restitution, one for each of the two species. By means
of molecular dynamics simulations, it is shown that the non-equipartition of
kinetic energy is not affected by the differential mechanism of energy
injection, aside the usual boundary layer around the wall. The macroscopic
state of the mixture in the bulk is defined by intensive variables that do not
include the partial granular temperatures of the components
Management of Virtual Machines on Globus Grids Using GridWay
Virtual machines are a promising technology to over-come some of the problems found in current Grid infras-tructures, like heterogeneity, performance partitioning or application isolation. In this work, we present an straight-forward deployment of virtual machines in Globus Grids. This solution is based on standard services and does not re-quire additional middleware to be installed. Also, we assess the suitability of this deployment in the execution of a high throughput scientific application, the XMM-Newton Scien-tific Analysis System
Boussinesq Solitary-Wave as a Multiple-Time Solution of the Korteweg-de Vries Hierarchy
We study the Boussinesq equation from the point of view of a multiple-time
reductive perturbation method. As a consequence of the elimination of the
secular producing terms through the use of the Korteweg--de Vries hierarchy, we
show that the solitary--wave of the Boussinesq equation is a solitary--wave
satisfying simultaneously all equations of the Korteweg--de Vries hierarchy,
each one in an appropriate slow time variable.Comment: 12 pages, RevTex (to appear in J. Math Phys.
Influence of self-gravity on the runaway instability of black hole-torus systems
Results from the first fully general relativistic numerical simulations in
axisymmetry of a system formed by a black hole surrounded by a self-gravitating
torus in equilibrium are presented, aiming to assess the influence of the torus
self-gravity on the onset of the runaway instability. We consider several
models with varying torus-to-black hole mass ratio and angular momentum
distribution orbiting in equilibrium around a non-rotating black hole. The tori
are perturbed to induce the mass transfer towards the black hole. Our numerical
simulations show that all models exhibit a persistent phase of axisymmetric
oscillations around their equilibria for several dynamical timescales without
the appearance of the runaway instability, indicating that the self-gravity of
the torus does not play a critical role favoring the onset of the instability,
at least during the first few dynamical timescales.Comment: To appear on Phys.Rev.Let
Escape of a Uniform Random Walk from an Interval
We study the first-passage properties of a random walk in the unit interval
in which the length of a single step is uniformly distributed over the finite
range [-a,a]. For a of the order of one, the exit probabilities to each edge of
the interval and the exit time from the interval exhibit anomalous properties
stemming from the change in the minimum number of steps to escape the interval
as a function of the starting point. As a decreases, first-passage properties
approach those of continuum diffusion, but non-diffusive effects remain because
of residual discreteness effectsComment: 8 pages, 8 figures, 2 column revtex4 forma
- âŠ