79 research outputs found

    Phase space geometry and reaction dynamics near index two saddles

    Full text link
    We study the phase space geometry associated with index 2 saddles of a potential energy surface and its influence on reaction dynamics for nn degree-of-freedom (DoF) Hamiltonian systems. For index 1 saddles of potential energy surfaces (the case of classical transition state theory), the existence of a normally hyperbolic invariant manifold (NHIM) of saddle stability type has been shown, where the NHIM serves as the "anchor" for the construction of dividing surfaces having the no-recrossing property and minimal flux. For the index 1 saddle case the stable and unstable manifolds of the NHIM are co-dimension one in the energy surface, and act as conduits for reacting trajectories in phase space. The situation for index 2 saddles is quite different. We show that NHIMs with their stable and unstable manifolds still exist, but that these manifolds by themselves lack sufficient dimension to act as barriers in the energy surface. Rather, there are different types of invariant manifolds, containing the NHIM and its stable and unstable manifolds, that act as co-dimension one barriers in the energy surface. These barriers divide the energy surface in the vicinity of the index 2 saddle into regions of qualitatively different trajectories exhibiting a wider variety of dynamical behavior than for the case of index 1 saddles. In particular, we can identify a class of trajectories, which we refer to as "roaming trajectories", which are not associated with reaction along the classical minimum energy path (MEP). We illustrate the significance of our analysis of the index 2 saddle for reaction dynamics with two examples.Comment: 43 pages, 4 figure

    Polymorphic Signature of the Anti-inflammatory Activity of 2,2′- {[1,2-Phenylenebis(methylene)]bis(sulfanediyl)}bis(4,6- dimethylnicotinonitrile)

    Get PDF
    Weak noncovalent interactions are the basic forces in crystal engineering. Polymorphism in flexible molecules is very common, leading to the development of the crystals of same organic compounds with different medicinal and material properties. Crystallization of 2,2′- {[1,2-phenylenebis(methylene)]bis(sulfanediyl)}bis(4,6-dimethylnicotinonitrile) by evaporation at room temperature from ethyl acetate and hexane and from methanol and ethyl acetate gave stable polymorphs 4a and 4b, respectively, while in acetic acid, it gave metastable polymorph 4c. The polymorphic behavior of the compound has been visualized through singlecrystal X-ray and Hirshfeld analysis. These polymorphs are tested for anti-inflammatory activity via the complete Freund’s adjuvant-induced rat paw model, and compounds have exhibited moderate activities. Studies of docking in the catalytic site of cyclooxygenase-2 were used to identify potential anti-inflammatory lead compounds. These results suggest that the supramolecular aggregate structure, which is formed in solution, influences the solid state structure and the biological activity obtained upon crystallization

    Magnetic Properties of Acenes and Their o-Quinone Derivatives: Computer Simulation

    Get PDF
    Quantum chemical study (DFT UB3LYP/6-311++G(d,p)) of the structure and properties of acenes functionalized with two o-benzoquinone groups and their complexes with sodium cations has been performed. An increase in the number of fused rings has been shown to result in the stabilization of biradicaloid state of acenes and the switching of the character of exchange interactions between redox-active moieties from antiferromagnetic to ferromagnetic. The obtained results allow one to consider o-quinone acene derivatives as a basis for designing magnetoactive compounds

    Sandwich Compounds of Transition Metals with Cyclopolyenes and Isolobal Boron Analogues

    No full text
    A series of sandwich compounds of transition metals (M=Ni, Fe, Cr) with cyclic hydrocarbon (M(CH)n) and borane (M(BH2)n), ligands (including mixed hydrocarbon/borane sandwiches) has been studied using density functional theory (B3LYP/6‐311+G(df,p)). Multicenter bonding between the central metal atom and basal cycloborane rings provides stabilization to planar cycloborane species. Large negative NICS values allude to aromatic character in the cycloboranes similar to the analogous cyclic hydrocarbons. The ability of cycloborane sandwiches to stabilize attached carbocations, radicals and carbanions is also assessed
    corecore