174 research outputs found

    Constraining f(R)f(R) gravity models with disappearing cosmological constant

    Full text link
    The f(R)f(R) gravity models proposed by Hu-Sawicki and Starobinsky are generic for local gravity constraints to be evaded. The large deviations from these models either result into violation of local gravity constraints or the modifications are not distinguishable from cosmological constant. The curvature singularity in these models is generic but can be avoided provided that proper fine tuning is imposed on the evolution of scalaron in the high curvature regime. In principle, the problem can be circumvented by incorporating quadratic curvature correction in the Lagrangian though it might be quite challenging to probe the relevant region numerically.Comment: 9 pages and 4 figures, minor clarifications and corrections added, final version to appear in PR

    Negative Pressure and Naked Singularities in Spherical Gravitational Collapse

    Get PDF
    Assuming the weak energy condition, we study the nature of the non-central shell-focussing singularity which can form in the gravitational collapse of a spherical compact object in classical general relativity. We show that if the radial pressure is positive, the singularity is covered by a horizon. For negative radial pressures, the singularity will be covered if the ratio of pressure to the density is greater than -1/3 and naked if this ratio is ≀−1/3\leq -1/3.Comment: 7 pages, LaTeX Fil

    A note on the cylindrical collapse of counter-rotating dust

    Full text link
    We find analytical solutions describing the collapse of an infinitely long cylindrical shell of counter-rotating dust. We show that--for the classes of solutions discussed herein--from regular initial data a curvature singularity inevitably develops, and no apparent horizons form, thus in accord with the spirit of the hoop conjecture.Comment: 8 pages, LaTeX, ijmpd macros (included), 1 eps figure; accepted for publication in Int. J. Mod. Phys.

    Spherical Dust Collapse in Higher Dimensions

    Full text link
    We consider here the question if it is possible to recover cosmic censorship when a transition is made to higher dimensional spacetimes, by studying the spherically symmetric dust collapse in an arbitrary higher spacetime dimension. It is pointed out that if only black holes are to result as end state of a continual gravitational collapse, several conditions must be imposed on the collapsing configuration, some of which may appear to be restrictive, and we need to study carefully if these can be suitably motivated physically in a realistic collapse scenario. It would appear that in a generic higher dimensional dust collapse, both black holes and naked singularities would develop as end states as indicated by the results here. The mathematical approach developed here generalizes and unifies the earlier available results on higher dimensional dust collapse as we point out. Further, the dependence of black hole or naked singularity end states as collapse outcomes, on the nature of the initial data from which the collapse develops, is brought out explicitly and in a transparent manner as we show here. Our method also allows us to consider here in some detail the genericity and stability aspects related to the occurrence of naked singularities in gravitational collapse.Comment: Revtex4, Title changed, To appear in Physical Review

    Singularities in gravitational collapse with radial pressure

    Get PDF
    We analyze spherical dust collapse with non-vanishing radial pressure, Π\Pi, and vanishing tangential stresses. Considering a barotropic equation of state, Π=ÎłÏ\Pi=\gamma\rho, we obtain an analytical solution in closed form---which is exact for Îł=−1,0\gamma=-1,0, and approximate otherwise---near the center of symmetry (where the curvature singularity forms). We study the formation, visibility, and curvature strength of singularities in the resulting spacetime. We find that visible, Tipler strong singularities can develop from generic initial data. Radial pressure alters the spectrum of possible endstates for collapse, increasing the parameter space region that contains no visible singularities, but cannot by itself prevent the formation of visible singularities for sufficiently low values of the energy density. Known results from pressureless dust are recovered in the Îł=0\gamma=0 limit.Comment: to appear in GRG; LaTeX, 22 pages, 2 eps figure

    The spectrum of endstates of gravitational collapse with tangential stresses

    Get PDF
    The final state--black hole or naked singularity--of the gravitational collapse of a marginally bound matter configuration in the presence of tangential stresses is classified, in full generality, in terms of the initial data and equation of state. If the tangential pressure is sufficiently strong, configurations that would otherwise evolve to a spacelike singularity, result in a locally naked singularity, both in the homogeneous and in the general, inhomogeneous density case.Comment: 9 pages, revtex4; accepted for publication in Phys. Rev.

    Gravitational Collapse and Cosmological Constant

    Get PDF
    We consider here the effects of a non-vanishing cosmological term on the final fate of a spherical inhomogeneous collapsing dust cloud. It is shown that depending on the nature of the initial data from which the collapse evolves, and for a positive value of the cosmological constant, we can have a globally regular evolution where a bounce develops within the cloud. We characterize precisely the initial data causing such a bounce in terms of the initial density and velocity profiles for the collapsing cloud. In the cases otherwise, the result of collapse is either formation of a black hole or a naked singularity resulting as the end state of collapse. We also show here that a positive cosmological term can cover a part of the singularity spectrum which is visible in the corresponding dust collapse models for the same initial data.Comment: 18 pages, no figure

    Interplay of fission modes in mass distribution of light actinide nuclei 225,227Pa

    Get PDF
    Fission-fragment mass distributions were measured for 225,227Pa nuclei formed in fusion reactions of 19F + 206, 208Pb around fusion barrier energies. Mass-angle correlations do not indicate any quasi-fission like events in this bombarding energy range. Mass distributions were fitted by Gaussian distribution and mass variance extracted. At below-barrier energies, the mass variance was found to increase with decrease in energy for both nuclei. Results from present work were compared with existing data for induced fission of 224, 226Th and 228U around barrier energies. Enhancement in mass variance of 225, 227Pa nuclei at below-barrier energies shows evidence for presence of asymmetric fission events mixed with symmetric fission events. This is in agreement with the results of mass distributions of nearby nuclei 224, 226Th and 228U where two-mode fission process was observed. Two-mode feature of fission arises due to the shell effects changing the landscape of the potential energy surfaces at low excitation energies. The excitation-energy dependence of the mass variance gives strong evidence for survival of microscopic shell effects in fission of light actinide nuclei 225, 227Pa with initial excitation energy ~30 - 50 MeV

    Black holes vs. naked singularities formation in collapsing Einstein's clusters

    Full text link
    Non-static, spherically symmetric clusters of counter-rotating particles, of the type first introduced by Einstein, are analysed here. The initial data space can be parameterized in terms of three arbitrary functions, namely; initial density, velocity and angular momentum profiles. The final state of collapse, black hole or naked singularity, turns out to depend on the order of the first non-vanishing derivatives of such functions at the centre. The work extends recent results by Harada, Iguchi and Nakao.Comment: 13 pages, LaTeX format. To appear in Physical Review

    Photon redshift and the appearance of a naked singularity

    Get PDF
    In this paper we analyze the redshift as observed by an external observer receiving photons which terminate in the past at the naked singularity formed in a Tolman-Bondi dust collapse. Within the context of models considered here it is shown that photons emitted from a weak curvature naked singularity are always finitely redshifted to an external observer. Certain cases of strong curvature naked singularities, including the self-similar one, where the photons are infinitely redshifted are also pointed out.Comment: Latex file, 14 pages, no figures, one change in the reference. Accepted for publication in Phys. Rev.
    • 

    corecore