Abstract

We consider here the effects of a non-vanishing cosmological term on the final fate of a spherical inhomogeneous collapsing dust cloud. It is shown that depending on the nature of the initial data from which the collapse evolves, and for a positive value of the cosmological constant, we can have a globally regular evolution where a bounce develops within the cloud. We characterize precisely the initial data causing such a bounce in terms of the initial density and velocity profiles for the collapsing cloud. In the cases otherwise, the result of collapse is either formation of a black hole or a naked singularity resulting as the end state of collapse. We also show here that a positive cosmological term can cover a part of the singularity spectrum which is visible in the corresponding dust collapse models for the same initial data.Comment: 18 pages, no figure

    Similar works

    Available Versions

    Last time updated on 02/01/2020