73,221 research outputs found

    Directionally solidified eutectic gamma plus beta nickel-base superalloys

    Get PDF
    A directionally solidified multivariant eutectic gamma + beta nickel-base superalloy casting having improved high temperature strength and oxidation resistance properties is provided. This comprises a two phase eutectic structure containing, on a weight percent basis, 5.0-15.0 tungsten, 8.5-14.5 aluminum, 0.0-35.0 cobalt and the balance being nickel. Embedded within the gamma phase nickel-base matrix are aligned eutectic beta phase (primarily (NiCo)Al reinforcing lamellae

    Directionally solidified eutectic gamma-gamma nickel-base superalloys

    Get PDF
    A directionally solidified multivariant eutectic gamma-gamma prime nickel-base superalloy casting having improved high temperature properties was developed. The alloy is comprised of a two phase eutectic structure consisting essentially of on a weight percent base, 6.0 to 9.0 aluminum, 5.0 to 17.0 tantalum, 0-10 cobalt, 0-6 vanadium, 0-6 rhenium, 2.0-6.0 tungsten, and the balance being nickel, subject to the proviso that the sum of the atomic percentages of aluminum plus tantalum is within the range of from 19-22, and the ratio of atomic percentages of tantalum to aluminum plus tantalum is within the range of from 0.12 to 0.23. Embedded within the gamma nickel-base matrix are aligned eutectic gamma prime phase (primarily nickel-aluminum-tantalum) reinforcing fibers

    Coatings for directional eutectics

    Get PDF
    Significant advances have been made in the development of an environmentally stable coating for a very high strength, directionally solidified eutectic alloy designated NiTaC-13. Three duplex (two-layer) coatings survived 3,000 hours on a cyclic oxidation test (1,100 C to 90 C). These coatings were fabricated by first depositing a layer of NiCrAl(Y) by vacuum evaporation from an electron beam heated source, followed by depositing an aluminizing overlayer. The alloy after exposure with these coatings was denuded of carbide fibers at the substrate/coating interface. It was demonstrated that TaC fiber denudation can be greatly retarded by applying a carbon-bearing coating. The coating was applied by thermal spraying followed by aluminization. Specimens coated with NiCrAlCY+Al survived over 2,000 hours in the cyclic oxidation test with essentially no TaC denudation. Coating ductility was studied for coated and heat-treated bars, and stress rupture life at 871 C and 1,100 C was determined for coated and cycled bars

    Mode-locked dysprosium fiber laser: picosecond pulse generation from 2.97 to 3.30 {\mu}m

    Full text link
    Mode-locked fiber laser technology to date has been limited to sub-3 {\mu}m wavelengths, despite significant application-driven demand for compact picosecond and femtosecond pulse sources at longer wavelengths. Erbium- and holmium-doped fluoride fiber lasers incorporating a saturable absorber are emerging as promising pulse sources for 2.7--2.9 {\mu}m, yet it remains a major challenge to extend this coverage. Here, we propose a new approach using dysprosium-doped fiber with frequency shifted feedback (FSF). Using a simple linear cavity with an acousto-optic tunable filter, we generate 33 ps pulses with up to 2.7 nJ energy and 330 nm tunability from 2.97 to 3.30 {\mu}m (3000--3400 cm^-1)---the first mode-locked fiber laser to cover this spectral region and the most broadly tunable pulsed fiber laser to date. Numerical simulations show excellent agreement with experiments and also offer new insights into the underlying dynamics of FSF pulse generation. This highlights the remarkable potential of both dysprosium as a gain material and FSF for versatile pulse generation, opening new opportunities for mid-IR laser development and practical applications outside the laboratory.Comment: Accepted for APL Photonics, 22nd August 201

    Molecular clouds and clumps in the Boston University-Five College Radio Astronomy Observatory Galactic Ring Survey

    Full text link
    The Boston University-Five College Radio Astronomy Observatory (BU-FCRAO) Galactic Ring Survey (GRS) of 13 CO (1-0) emission covers Galactic longitudes 18 deg < l < 55.7 deg and Galactic latitudes |b| <= 1 deg. Using the SEQUOIA array on the FCRAO 14m telescope, the GRS fully sampled the 13 CO Galactic emission (46 arcsec angular resolution on a 22 arcsec grid) and achieved a spectral resolution of 0.21 km/s. Because the GRS uses 13 CO, an optically thin tracer, rather than 12 CO, an optically thick tracer, the GRS allows a much better determination of column density and also a cleaner separation of velocity components along a line of sight. With this homogeneous, fully-sampled survey of 13 CO, emission, we have identified 829 molecular clouds and 6124 clumps throughout the inner Galaxy using the CLUMPFIND algorithm. Here we present details of the catalog and a preliminary analysis of the properties of the molecular clouds and their clumps. Moreover, we compare clouds inside and outside of the 5 kpc ring and find that clouds within the ring typically have warmer temperatures, higher column densities, larger areas, and more clumps compared to clouds located outside the ring. This is expected if these clouds are actively forming stars. This catalog provides a useful tool for the study of molecular clouds and their embedded young stellar objects.Comment: 29 pages. ApJ in pres

    Laboratory studies of photodissociation processes relevant to the formation of cometary radicals

    Get PDF
    The strength of the C2(d 3 Pi g yields a 3 Pi u) Swan band emission in the spectra of cometary comae identifies this species as a prominent constituent of the coma gas. It was previously suggested that the formation of cometary C2 proceeds via the secondary photolysis of the C2H radical. The detection of C2H in the interstellar medium and the recent analysis of the radial variation in C2(delta V=O) surface brightness of Comet Halley support the postulate that C2 is a third-generation molecule. Measurement of the C2 and C2H translational energy distributions produced from the multiphoton dissociation (MPD) of acetylene at 193 nm are identified . Time-resolved FTIR emission studies of the nascent C2H radical formed in the C2H2 yields C2H + H reaction verify that this species is produced both vibrationally and electronically excited. A survey of the internal energy distributions of the C2 fragments produced from the MPD of acetylene using a high intensity ArF laser is currently in progress in the laboratory. Recent experiments have focused on the measurement of rotational energy distribution for the C2(A 1 Pi u, a 3 Pi u) fragments. The C2(a 3 Pi u) detection capability is currently being improved by performing this experiment in a molecular beam, thus allowing for discrimination between initial emission and laser-induced fluorescence (LIF). Although the experiments performed to date provide considerable evidence in support of C2H yields C2 + H reaction, there is an important distinction to be made when comparing the laboratory conditions to those typically found in comets. The C2H radicals generated in the laboratory experiments are formed vibrationally and/or electronically excited. Any rotationally/vibrationally excited C2H present in cometary comae will quickly undergo radiative relaxation in the infrared to their lowest rotational and vibrational state. Experiments are currently under way to confirm the cometary formation of C2 via the VUV dissociation of cold C2H
    corecore