34,240 research outputs found
Using SPARQL – the practitioners’ viewpoint
A number of studies have analyzed SPARQL log data to draw conclusions about how SPARQL is being used. To complement this work, a survey of SPARQL users has been undertaken. Whilst confirming some of the conclusions of the previous studies, the current work is able to provide additional insight into how users create SPARQL queries, the difficulties they encounter, and the features they would like to see included in the language. Based on this insight, a number of recommendations are presented to the community. These relate to predicting and avoiding computationally expensive queries; extensions to the language; and extending the search paradigm
Note on the derivative of the hyperbolic cotangent
In a letter to Nature (Ford G W and O'Connell R F 1996 Nature 380 113) we
presented a formula for the derivative of the hyperbolic cotangent that differs
from the standard one in the literature by an additional term proportional to
the Dirac delta function. Since our letter was necessarily brief, shortly after
its appearance we prepared a more extensive unpublished note giving a detailed
explanation of our argument. Since this note has been referenced in a recent
article (Estrada R and Fulling S A 2002 J. Phys. A: Math. Gen. 35 3079) we
think it appropriate that it now appear in print. We have made no alteration to
the original note
The Effects of Stress Tensor Fluctuations upon Focusing
We treat the gravitational effects of quantum stress tensor fluctuations. An
operational approach is adopted in which these fluctuations produce
fluctuations in the focusing of a bundle of geodesics. This can be calculated
explicitly using the Raychaudhuri equation as a Langevin equation. The physical
manifestation of these fluctuations are angular blurring and luminosity
fluctuations of the images of distant sources. We give explicit results for the
case of a scalar field on a flat background in a thermal state.Comment: 26 pages, 1 figure, new material added in Sect. III and in Appendices
B and
Effect of an External Field on Decoherence
"Decoherence of quantum superpositions through coupling to engineered
reservoirs" is the topic of a recent article by Myatt et al. [Nature
{\underline{403}}, 269 (2000)] which has attracted much interest because of its
relevance to current research in fundamental quantum theory, quantum
computation, teleportation, entanglement and the quantum-classical interface.
However, the preponderance of theoretical work on decoherence does not consider
the effect of an {\underline{external field}}. Here, we present an analysis of
such an effect in the case of the random delta-correlated force discussed by
Myatt et al
Quantum Field Theory Constrains Traversable Wormhole Geometries
Recently a bound on negative energy densities in four-dimensional Minkowski
spacetime was derived for a minimally coupled, quantized, massless, scalar
field in an arbitrary quantum state. The bound has the form of an uncertainty
principle-type constraint on the magnitude and duration of the negative energy
density seen by a timelike geodesic observer. When spacetime is curved and/or
has boundaries, we argue that the bound should hold in regions small compared
to the minimum local characteristic radius of curvature or the distance to any
boundaries, since spacetime can be considered approximately Minkowski on these
scales. We apply the bound to the stress-energy of static traversable wormhole
spacetimes. Our analysis implies that either the wormhole must be only a little
larger than Planck size or that there is a large discrepancy in the length
scales which characterize the wormhole. In the latter case, the negative energy
must typically be concentrated in a thin band many orders of magnitude smaller
than the throat size. These results would seem to make the existence of
macroscopic traversable wormholes very improbable.Comment: 26 pages, plain LaTe
Does the Third Law of Thermodynamics hold in the Quantum Regime?
The first in a long series of papers by John T. Lewis,
G. W. Ford and the present author, considered the problem of the most general
coupling of a quantum particle to a linear passive heat bath, in the course of
which they derived an exact formula for the free energy of an oscillator
coupled to a heat bath in thermal equilibrium at temperature T. This formula,
and its later extension to three dimensions to incorporate a magnetic field,
has proved to be invaluable in analyzing problems in quantum thermodynamics.
Here, we address the question raised in our title viz. Nernst's third law of
thermodynamics
Decoherence in Phase Space
Much of the discussion of decoherence has been in terms of a particle moving
in one dimension that is placed in an initial superposition state (a
Schr\"{o}dinger "cat" state) corresponding to two widely separated wave
packets. Decoherence refers to the destruction of the interference term in the
quantum probability function. Here, we stress that a quantitative measure of
decoherence depends not only on the specific system being studied but also on
whether one is considering coordinate, momentum or phase space. We show that
this is best illustrated by considering Wigner phase space where the measure is
again different. Analytic results for the time development of the Wigner
distribution function for a two-Gaussian Schrodinger "cat" state have been
obtained in the high-temperature limit (where decoherence can occur even for
negligible dissipation) which facilitates a simple demonstration of our
remarks.Comment: in press in Laser Phys.13(2003
Exact solution of the Hu-Paz-Zhang master equation
The Hu-Paz-Zhang equation is a master equation for an oscillator coupled to a
linear passive bath. It is exact within the assumption that the oscillator and
bath are initially uncoupled . Here an exact general solution is obtained in
the form of an expression for the Wigner function at time t in terms of the
initial Wigner function. The result is applied to the motion of a Gaussian wave
packet and to that of a pair of such wave packets. A serious divergence arising
from the assumption of an initially uncoupled state is found to be due to the
zero-point oscillations of the bath and not removed in a cutoff model. As a
consequence, worthwhile results for the equation can only be obtained in the
high temperature limit, where zero-point oscillations are neglected. In that
limit closed form expressions for wave packet spreading and attenuation of
coherence are obtained. These results agree within a numerical factor with
those appearing in the literature, which apply for the case of a particle at
zero temperature that is suddenly coupled to a bath at high temperature. On the
other hand very different results are obtained for the physically consistent
case in which the initial particle temperature is arranged to coincide with
that of the bath
Averaged Energy Conditions in 4D Evaporating Black Hole Backgrounds
Using Visser's semi-analytical model for the stress-energy tensor
corresponding to the conformally coupled massless scalar field in the Unruh
vacuum, we examine, by explicitly evaluating the relevant integrals over
half-complete geodesics, the averaged weak (AWEC) and averaged null (ANEC)
energy conditions along with Ford-Roman quantum inequality-type restrictions on
negative energy in the context of four dimensional evaporating black hole
backgrounds. We find that in all cases where the averaged energy conditions
fail, there exist quantum inequality bounds on the magnitude and duration of
negative energy densities.Comment: Revtex, 13 pages, to appear in Phy. Rev.
Multi-scale Renormalisation Group Improvement of the Effective Potential
Using the renormalisation group and a conjecture concerning the perturbation
series for the effective potential, the leading logarithms in the effective
potential are exactly summed for scalar and Yukawa theories.Comment: 19 pages, DIAS STP 94-09. Expanded to check large N limit, typo's
corrected, to appear in Phys Rev
- …