9,898 research outputs found

    What is the upper limit on the lightest supersymmetric Higgs mass?

    Get PDF
    In this talk the question of what is the upper bound on the lightest supersymmetric Higgs mass, m_h is addressed. This question is relevant since experimental lower bounds on m_h might implement, in the near future, exclusion of supersymmetry. By imposing (perturbative) unification of the gauge couplings at some high scale \simgt 10^{17} GeV, we have found that for a top-quark mass M_t=175 GeV, and depending on the supersymmetric parameters, this bound can be as high as 205 GeV.Comment: 7 pages, 4 figures, Work presented at PASCOS-98, March 22-29 199

    Composite Higgs under LHC Experimental Scrutiny

    Full text link
    The LHC has been built to understand the dynamics at the origin of the breaking of the electroweak symmetry. Weakly coupled models with a fundamental Higgs boson have focused most of the attention of the experimental searches. We will discuss here how to reinterpret these searches in the context of strongly coupled models where the Higgs boson emerges as a composite particle. In particular, we use LHC data to constrain the compositeness scale. We also briefly review the prospects to observe other bosonic and fermionic resonances of the strong sector.Comment: 6 pages. Contribution to the proceedings of Hadron Collider Physics Symposium 2011, Paris Nov. 14-1

    First Glimpses at Higgs' face

    Get PDF
    The 8 TeV LHC Higgs search data just released indicates the existence of a scalar resonance with mass ~ 125 GeV. We examine the implications of the data reported by ATLAS, CMS and the Tevatron collaborations on understanding the properties of this scalar by performing joint fits on its couplings to other Standard Model particles. We discuss and characterize to what degree this resonance has the properties of the Standard Model (SM) Higgs, and consider what implications can be extracted for New Physics in a (mostly) model-independent fashion. We find that, if the Higgs couplings to fermions and weak vector bosons are allowed to differ from their standard values, the SM is ~ 2 sigma from the best fit point to current data. Fitting to a possible invisible decay branching ratio, we find BR_{inv} = 0.05\pm 0.32\ (95% C.L.) We also discuss and develop some ways of using the data in order to bound or rule out models which modify significantly the properties of this scalar resonance and apply these techniques to the global current data set.Comment: 26 pages, 7 figures, v2 post ICHEP data updat

    The 750 GeV Diphoton Excess as a First Light on Supersymmetry Breaking

    Full text link
    One of the most exciting explanations advanced for the recent diphoton excess found by ATLAS and CMS is in terms of sgoldstino decays: a signal of low-energy supersymmetry-breaking scenarios. The sgoldstino, a scalar, couples directly to gluons and photons, with strength related to gaugino masses, that can be of the right magnitude to explain the excess. However, fitting the suggested resonance width, Gamma ~ 45 GeV, is not so easy. In this paper we explore efficient possibilities to enhance the sgoldstino width, via the decay into two Higgses, two Higgsinos and through mixing between the sgoldstino and the Higgs boson. In addition, we present an alternative and more efficient mechanism to generate a mass splitting between the scalar and pseudoscalar components of the sgoldstino, which has been suggested as an interesting alternative explanation to the apparent width of the resonance.Comment: 14 pages, 3 figure

    The Lightest Higgs Boson Mass in the Minimal Supersymmetric Standard Model

    Full text link
    We compute the upper bound on the mass of the lightest Higgs boson in the Minimal Supersymmetric Standard Model in a model-independent way, including leading (one-loop) and next-to-leading order (two-loop) radiative corrections. We find that (contrary to some recent claims) the two-loop corrections are negative with respect to the one-loop result and relatively small (\simlt 3\%). After defining physical (pole) top quark mass MtM_t, by including QCD self-energies, and physical Higgs mass MHM_H, by including the electroweak self-energies Π(MH2)Π(0)\Pi\left(M_H^2\right)-\Pi(0), we obtain the upper limit on MHM_H as a function of supersymmetric parameters. We include as supersymmetric parameters the scale of supersymmetry breaking MSM_S, the value of tanβ\tan \beta and the mixing between stops Xt=At+μcotβX_t= A_t + \mu \cot\beta (which is responsible for the threshold correction on the Higgs quartic coupling). Our results do not depend on further details of the supersymmetric model. In particular, for MS1M_S\leq 1 TeV, maximal threshold effect Xt2=6MS2X_t^2=6M_S^2 and any value of tanβ\tan\beta, we find MH140M_H\leq 140 GeV for Mt190M_t\leq 190 GeV. In the particular scenario where the top is in its infrared fixed point we find MH86M_H\leq 86 GeV for Mt=170M_t = 170 GeV.Comment: 24 pages + 15 figures in one compressed uuencoded tarred postscript file (The figures can be obtained by e-mail from [email protected]; also, the whole postscript file of the text including the figures can be obtained by ANONYMOUS FTP from ROCA.CSIC.ES (161.111.20.20) at the directory HEP the file being HIGGS.PS: just type GET HEP/HIGGS.PS), Latex, CERN-TH.7334/9
    corecore