1,022 research outputs found

    Studies on immunocytochemical localization of inhibin-like material in human prostatic tissue: comparison of its distribution in normal, benign and malignant prostates.

    Get PDF
    A specific antiserum has been generated against inhibin-like material (ILM) of prostatic origin. Using the immunoperoxidase technique, localization of ILM has been examined in a total of 114 prostates including normal (4 specimens), malignant (46) and hyperplastic (55) tissues. ILM positive immunocytochemical reactions were confined to the cytoplasm and not the nucleus of the prostatic acinar cells in the three categories of prostate, whereas the stroma showed negative reactions. The intensity of positive reactions decreased in the following order: Hyperplasia, incidental and moderately differentiated carcinomas, poorly differentiated carcinomas, whereas metaplasia and granulomatous prostatitis gave negative reactions for ILM. Using this experimental protocol, 200 non-prostatic tissue were found to be completely negative, demonstrating the specificity of the test for prostatic epithelium. These findings indicate a potential use of ILM as a marker of prostatic tissue

    Immunocytochemical localisation of follicle stimulating hormone (FSH) in normal, benign and malignant human prostates.

    Get PDF
    Immunocytochemical localisation of follicle stimulating hormone (FSH) was carried out in normal, benign and malignant human prostates by indirect immunoperoxidase technique. Positive staining was observed in the epithelial cells of all the three categories, while the stromal cells showed a weakly positive reaction in a few specimens. The brown reaction product was dispersed in the cytoplasm of the epithelial cells. These observations demonstrate the presence of immunoreactive FSH-like peptide in human prostate. The significance of FSH in the aetiopathology of prostatic disorders is discussed

    Duplex ultrasound imaging alone is sufficient for midterm endovascular aneurysm repair surveillance: A cost analysis study and prospective comparison with computed tomography scan

    Get PDF
    ObjectiveEarly in our experience with endovascular aortic aneurysm repair (EVAR) we performed both serial computed tomography scans and duplex ultrasound (DU) imaging in our post-EVAR surveillance regimen. Later we conducted a prospective study with DU imaging as the sole surveillance study and determined cost savings and outcome using this strategy.MethodsFrom September 21, 1998, to May 30, 2008, 250 patients underwent EVAR at our hospital. Before July 1, 2004, EVAR patients underwent CT and DU imaging performed every 6 months during the first year and then annually if no problems were identified (group 1). We compared aneurysm sac size, presence of endoleak, and graft patency between the two scanning modalities. After July 1, 2004, patients underwent surveillance using DU imaging as the sole surveillance study unless a problem was detected (group 2). CT and DU imaging charges for each regimen were compared using our 2008 health system pricing and Medicare reimbursements. All DU examinations were performed in our accredited noninvasive vascular laboratory by experienced technologists. Statistical analysis was performed using Pearson correlation coefficient.ResultsDU and CT scans were equivalent in determining aneurysm sac diameter after EVAR (P < .001). DU and CT were each as likely to falsely suggest an endoleak when none existed and were as likely to miss an endoleak. Using DU imaging alone would have reduced cost of EVAR surveillance by 29% (534,356)ingroup1.Costsavingsof534,356) in group 1. Cost savings of 1595 per patient per year were realized in group 2 by eliminating CT scan surveillance. None of the group 2 patients sustained an adverse event such as rupture, graft migration, or limb occlusion as a result of having DU imaging performed as the sole follow-up modality.ConclusionSurveillance of EVAR patients can be performed accurately, safely, and cost-effectively with DU as the sole imaging study

    The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/VIRGO GW170817. VII. Properties of the Host Galaxy and Constraints on the Merger Timescale

    Full text link
    We present the properties of NGC 4993, the host galaxy of GW170817, the first gravitational wave (GW) event from the merger of a binary neutron star (BNS) system and the first with an electromagnetic (EM) counterpart. We use both archival photometry and new optical/near-IR imaging and spectroscopy, together with stellar population synthesis models to infer the global properties of the host galaxy. We infer a star formation history peaked at ≳10\gtrsim 10 Gyr ago, with subsequent exponential decline leading to a low current star formation rate of 0.01 M⊙_{\odot} yr−1^{-1}, which we convert into a binary merger timescale probability distribution. We find a median merger timescale of 11.2−1.4+0.711.2^{+0.7}_{-1.4} Gyr, with a 90% confidence range of 6.8−13.66.8-13.6 Gyr. This in turn indicates an initial binary separation of ≈4.5\approx 4.5 R⊙_{\odot}, comparable to the inferred values for Galactic BNS systems. We also use new and archival HubbleHubble SpaceSpace TelescopeTelescope images to measure a projected offset of the optical counterpart of 2.12.1 kpc (0.64rer_{e}) from the center of NGC 4993 and to place a limit of Mr≳−7.2M_{r} \gtrsim -7.2 mag on any pre-existing emission, which rules out the brighter half of the globular cluster luminosity function. Finally, the age and offset of the system indicates it experienced a modest natal kick with an upper limit of ∼200\sim 200 km s−1^{-1}. Future GW−-EM observations of BNS mergers will enable measurement of their population delay time distribution, which will directly inform their viability as the dominant source of rr-process enrichment in the Universe.Comment: 9 Pages, 3 Figures, 2 Tables, ApJL, In Press. Keywords: GW170817, LV

    The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/VIRGO GW170817. V. Rising X-ray Emission from an Off-Axis Jet

    Full text link
    We report the discovery of rising X-ray emission from the binary neutron star (BNS) merger event GW170817. This is the first detection of X-ray emission from a gravitational-wave source. Observations acquired with the Chandra X-ray Observatory (CXO) at t~2.3 days post merger reveal no significant emission, with L_x<=3.2x10^38 erg/s (isotropic-equivalent). Continued monitoring revealed the presence of an X-ray source that brightened with time, reaching L_x\sim 9x10^39 erg/s at ~15.1 days post merger. We interpret these findings in the context of isotropic and collimated relativistic outflows (both on- and off-axis). We find that the broad-band X-ray to radio observations are consistent with emission from a relativistic jet with kinetic energy E_k~10^49-10^50 erg, viewed off-axis with theta_obs~ 20-40 deg. Our models favor a circumbinary density n~ 0.0001-0.01 cm-3, depending on the value of the microphysical parameter epsilon_B=10^{-4}-10^{-2}. A central-engine origin of the X-ray emission is unlikely. Future X-ray observations at t≳100t\gtrsim 100 days, when the target will be observable again with the CXO, will provide additional constraints to solve the model degeneracies and test our predictions. Our inferences on theta_obs are testable with gravitational wave information on GW170817 from Advanced LIGO/Virgo on the binary inclination.Comment: 7 Pages, 4 Figures, ApJL, In Press. Keywords: GW170817, LV

    Malaria surveillance in the Democratic Republic of the Congo: comparison of microscopy, PCR, and rapid diagnostic test

    Get PDF
    Malaria surveillance is critical for control efforts, but diagnostic methods frequently disagree. Here we compare microscopy, PCR, and a Rapid Diagnostic Test in 7,137 samples from children in the Democratic Republic of the Congo using Latent Class Analysis. PCR had the highest sensitivity (94.6%) and microscopy had the lowest (76.7%)

    Low prevalence of Plasmodium malariae and Plasmodium ovale mono-infections among children in the Democratic Republic of the Congo: a population-based, cross-sectional study

    Get PDF
    Abstract Background In an effort to improve surveillance for epidemiological and clinical outcomes, rapid diagnostic tests (RDTs) have become increasingly widespread as cost-effective and field-ready methods of malaria diagnosis. However, there are concerns that using RDTs specific to Plasmodium falciparum may lead to missed detection of other malaria species such as Plasmodium malariae and Plasmodium ovale. Methods Four hundred and sixty six samples were selected from children under 5 years old in the Democratic Republic of the Congo (DRC) who took part in a Demographic and Health Survey (DHS) in 2013–14. These samples were first tested for all Plasmodium species using an 18S ribosomal RNA-targeted real-time PCR; malaria-positive samples were then tested for P. falciparum, P. malariae and P. ovale using a highly sensitive nested PCR. Results The prevalence of P. falciparum, P. malariae and P. ovale were 46.6, 12.9 and 8.3 %, respectively. Most P. malariae and P. ovale infections were co-infected with P. falciparum—the prevalence of mono-infections of these species were only 1.0 and 0.6 %, respectively. Six out of these eight mono-infections were negative by RDT. The prevalence of P. falciparum by the more sensitive nested PCR was higher than that found previously by real-time PCR. Conclusions Plasmodium malariae and P. ovale remain endemic at a low rate in the DRC, but the risk of missing malarial infections of these species due to falciparum-specific RDT use is low. The observed prevalence of P. falciparum is higher with a more sensitive PCR method

    Optical follow-up of gravitational wave triggers with DECam

    Get PDF
    Gravitational wave (GW) events have several possible progenitors, including black hole mergers, cosmic string cusps, supernovae, neutron star mergers, and black hole–neutron star mergers. A subset of GW events are expected to produce electromagnetic (EM) emission that, once detected, will provide complementary information about their astrophysical context. To that end, the LIGO-Virgo Collaboration has partnered with other teams to send GW candidate alerts so that searches for their EM counterparts can be pursued. One such partner is the Dark Energy Survey (DES) and Dark Energy Camera (DECam) Gravitational Waves Program (DES-GW). Situated on the 4m Blanco Telescope at the Cerro Tololo Inter-American Observatory in Chile, DECam is an ideal instrument for optical followup observations of GW triggers in the southern sky. The DES-GW program performs subtraction of new search images with respect to preexisting overlapping images to select candidate sources. Due to the short decay timescale of the expected EM counterparts and the need to quickly eliminate survey areas with no counterpart candidates, it is critical to complete the initial analysis of each night's images within 24 hours. The computational challenges in achieving this goal include maintaining robust I/O pipelines during the processing, being able to quickly acquire template images of new sky regions outside of the typical DES observing regions, and being able to rapidly provision additional batch computing resources with little advance notice. We will discuss the search area determination, imaging pipeline, general data transfer strategy, and methods to quickly increase the available amount of batch computing. We will present results from the first season of observations from September 2015 to January 2016 and conclude by presenting improvements planned for the second observing season
    • …
    corecore