1,701 research outputs found

    A preliminary report for the design of mos (micro-olive-spreadsheet), a user-friendly spreadsheet for the evaluation of the microbiological quality of spanish-style bella di cerignola olives from apulia (Southern Italy)

    Get PDF
    A user friendly spreadsheet (Excel interface), designated MoS (Micro-Olive-Spreadsheet), is proposed in this paper as a tool to point out spoiling phenomena in Bella di Cerignola olive brines. The spreadsheet was designed as a protected Excel worksheet, where users input values for the microbiological criteria and pH of brines, and the output is a visual code, much like a traffic light: three red cells indicate a spoiling event, while two red cells indicate the possibility of a spoiling event. The input values are: (a) Total Aerobic Count (TAC); (b) Lactic Acid Bacteria (LAB); (c) yeasts; (d) staphylococci; (e) pH. TAC, LAB, yeasts, and pH are the input values for the first section (quality), while staphylococci count is the input for the second section (technological history). The worksheet can bemodified by adding other indices or by setting different breakpoints; however, it is a simple tool for an effective application of hazard analysis and predictive microbiology in table olive production

    Alginate- and Gelatin-Coated Apple Pieces as Carriers for Bifidobacterium animalis subsp. lactis DSM 10140

    Get PDF
    Fruit and vegetables are considered good natural supports for microorganisms; however, probiotics could cause negative changes on some organoleptic and sensory traits. Thus, the main topic of this paper was the design of coated apple chips as carriers for probiotics with a high level of sensory traits. The research was divided into two steps. First, four functional strains (Limosilactobacillus reuteri DSM 20016, Bifidobacterium animalis subsp. lactis DSM 10140, and Lactiplantibacillus plantarum c16 and c19) were immobilized on apple pieces through dipping of fruit chips in probiotic suspensions for different contact times (from 15 to 30 min) and stored at 4°C for 12 days. Periodically, the viable count was assessed. As a result of this step, a contact time of 15 min was chosen because it assured an optimal deposition of microorganisms. In the second step, apple pieces inoculated with B. animalis subsp. lactis DSM 10140 were coated with alginate and gelatin and stored at 4 and 8°C for 10 days; pH, microbiological counts, color (browning index), and sensory scores were evaluated. Bifidobacterium animalis DSM 10140 exerted a negative effect on apple chips and cause a significant browning; however, the use of coating counteracted this phenomenon. In fact, coated chips showed higher sensory scores and lower browning index. In addition, gelatin showed better performances in terms of probiotic viability, because at 8°C, a significant viability loss of B. animalis DSM 10140 (1.2 log cfu/g) was found on alginate-coated chips. Gelatin-coated apple pieces with B. animalis subsp. lactis DSM 10140 could be an attractive functional food for a wide audience, although further investigations are required on in vivo effects of this product after consumption

    Ultrasound-attenuated microorganisms inoculated in vegetable beverages: Effect of strains, temperature, ultrasound and storage conditions on the performances of the treatment

    Get PDF
    Four microorganisms (Lactobacillus acidophilus LA5, Bifidobacterium animalis subsp. lactis DSM 10140 and Lactiplantibacillus plantarum c16 and c19) were attenuated through ultrasound (US) treatments (40% of power for 2, 4 and 6 min; and 60% for 2 min; pulses were set at 2 s) inoculated in rice–oats–almond–soy-based beverages and stored at 4◦C for eight days. All strains were able to survive throughout the storage independently by the food matrix. Concerning the effect on acidification, the results were analyzed through multifactorial analysis of variance (MANOVA) and the key-findings of this were: (i) The treatment with 40% of power for 6 min was the most efficient at delaying acidification; (ii) Lb. acidophilus LA5 showed the best capacity to delay acidification; (iii) in the soy-based beverage a lower acidification was found. In a second step, L. plantarum c16 and c19 were attenuated, inoculated in rice beverage, stored under a thermal abuse (for 4 and 24 h) and then at 4, 15 and 20◦C. The results showed that only when US were combined with refrigeration temperatures were they efficient at delaying acidification. Thus, a perspective for attenuation could be the optimization of the treatment to design an effective way to counteract acidification also under a thermal abuse

    Ultrasonic modulation of the technological and functional properties of yeast strains

    Get PDF
    This research was aimed at studying the effects of low intensity ultrasound (US) on some technological and functional properties of eight strains of Saccharomyces cerevisiae; namely, growth patterns (growth at 2–5% of NaCl or at 37 °C), autoaggregation and tolerance to simulated gastrointestinal conditions were evaluated. A US treatment was applied at 20% of net power (130 W) by a modulating duration (2–10 min) and pulses (2–10 s). The viable count (4.81–6.33 log CFU/mL) was not affected by US, while in terms of technological traits the effect was strain specific; in particular, for some strains a positive effect of US was found with a significant growth enhancement (growth index >120%). The treatment was also able to increase the autoaggregation of some strains, thus suggesting that US could represent a promising way to treat and select nonconventional functional yeasts for food applications

    Increase of acidification of synthetic brines by ultrasound-treated Lactiplantibacillus plantarum strains isolated from olives

    Get PDF
    This paper focused on the evaluation of Ultrasound effect on the growth patterns (3–6% of salt and 45 °C), acidification (pH-decrease), interactions with microorganisms, and membrane permeability of nine strains of Lactiplantibacillus plantarum. Ultrasound treatment was applied at 20% of net power by modulating duration (2–10 min) and pulses (2–10 s). Viable count (7.15–8.16 log CFU/mL) was never affected by Ultrasound, while the treatment increased the extent of pH decrease of at least three strains (109, 162 and c19). L. plantarum c19 was the best performer, as a low intensity treatment was able to increase its acidification, without affecting its growth. The effects could be attributed to an increased permeability of the cellular membrane, as suggested by the increase of released intracellular components. Other factors should be further assessed (e.g. possible changes in the metabolism) and the performances of Ultrasound-treated strains in real brines

    Fish loss/waste and low-value fish challenges: State of art, advances, and perspectives

    Get PDF
    The sustainability of fishery is a global challenge due to overfishing and reduced stocks all over the world; one of the leading factors of this threat is fish loss/waste. As a contribution to the global efforts towards a sustainable world, this review addresses the topic from different sides and proposes an overview of biorefinery approaches by discussing bioactive compounds that could be produced from fish loss (nitrogen compounds, lipids, minerals and pigments, and fish-based compounds such as chitosan). The second part of this review reports on the possibility of using loss or unwanted fish to design products for human consumption or for animal feeding, with a focus on economic criteria, consumers’ segmentation, and some examples of products. The final focus is on Food and Agriculture Organization FAO guidelines as a roadmap for the future with respect to solving this threat by addressing the problem from different sides (technology, skills, market, policy, social and gender equity, and infrastructures)

    Fluid dynamic-based Engineering design of a Full-Scale Device for the improvement of Extra Virgin Olive Oil Yield and Quality by means of Combined Acoustic Cavitation and Thermal Conditioning

    Get PDF
    After some hesitations, the scientific community is jointly converging on the benefits due to the ultrasound treatment by means of mechanical effects generated by acoustic cavitation phenomena occurring into the olive oil paste proposed initially by Amirante and Clodoveo. In recent works, many authors have now confirmed that this promising emerging technology produces relevant beneficial effects if applied to the extraction process under well-controlled conditions. In the last years, the industrial applications of ultrasound (US) in the Extra-Virgin Olive Oil (EVOO) extraction process are changing the paradigm of the knowledge in this field of interest due to a great effort of the research activity. In the present work, the design of the device by means a Three-Dimensional (3D) Multiphase Computational Fluid Dynamic (CFD) analysis was performed, which describes the ultrasound effects in the olive paste, necessary to control the US waves propagation. Thus, fluid dynamic analysis allowed to predict the flow path in the ultrasound devices, to evaluate the flow parameters of the olive paste inside the SHE and the cavitation phenomenon, with the aim to find an optimal design, capable to ensure the best ultrasounds and mixing effects. Moreover, experimental results demonstrated that the machine can guarantee an actual simultaneous improvement of the olive oil extraction yield, as well as of the product quality. Finally, the results from sensory evaluations are summarized confirming the goodness of EVOO obtained by means of US

    Leukocyte telomere length as potential biomarker of HD progression: A follow-up study

    Get PDF
    The identification of biomarkers for neurodegenerative disorders such as Huntington's disease (HD) is crucial for monitoring disease progression and therapeutic trial outcomes, especially in the pre-manifest disease stage (pre-HD). In a previous study, we observed that leukocyte telomere length (LTL) was strongly correlated with the estimated time to clinical onset in pre-HD subjects. To validate this hypothesis, we designed a follow-up study in which we analyzed LTL in 45 pre-HD stage subjects at baseline (T0) and then again after clinical onset at follow-up (T1); the follow-up interval was about 3 years, and the CAG range was 39-51 repeats; 90 peripheral blood mononuclear cell samples (PBMCs) were obtained from the Enroll-HD biorepository. In pre-HD subjects at T0, LTL was significantly reduced by 22% compared to the controls and by 14% from T0 at T1. No relationship was observed between the LTL and CAG numbers in subjects carrying different CAG repeats at T0 and at T1, suggesting that LTL reduction occurs independently of CAG number in pre-HD subjects. ROC curve analysis was used to test the validity of LTL as a potential biomarker of HD progression and showed that LTL measurement is extremely accurate in discriminating pre-HD subjects from the controls and even pre-HD from manifest HD, thus yielding a robust prognostic value in pre-HD subjects

    Microencapsulation of saccharomyces cerevisiae into alginate beads: A focus on functional properties of released cells

    Get PDF
    Five yeast strains (four wild Saccharomyces cerevisiae strains and a collection strain-S. cerevisiae var. boulardii) were encapsulated in alginate beads. Encapsulation yield was at least 60% (100% for some strains) and yeasts survived in beads for 30 days at 4 â—¦C, although the viability was strongly affected during storage at 25 â—¦C (3 log reduction after 7 days). The kinetic of cell release was studied under static and dynamic conditions, but the results suggest that, after 48 h, beads contained a high number of yeasts. Thus, their use is advisable as re-usable carriers of starter cultures or as a vehicle of probiotics into the gut. Finally, some functional properties (biofilm formation, hydrophobicity, auto-aggregation, survival during the transit into the gut) were evaluated on yeasts released by beads to assess if microencapsulation could negatively affect these traits. The results showed that yeasts' entrapment in beads did not affect probiotic properties

    The main phenolic compounds responsible for the antioxidant capacity of sweet cherry (Prunus avium L.) pulp

    Get PDF
    The antioxidant capacity of sweet cherry (Prunus avium L.) pulp extracts is strictly related to the phenolic content, starting from the fact that the higher content of phenolic compounds corresponds to the higher antioxidant indexes. This work aims to assess which compounds characterized three cultivars, namely Ferrovia, Sweetheart, and Lapins grown in Southern Italy and mainly influenced the antioxidant capacity of their extracts. HPLC–MS/MS analyses were conducted to identify and quantify 17 flavonoids and 25 hydroxicinnamates derivatives. A significant influence of cultivar was revealed from one-way MANOVA (p < 0.05). Furthermore, the extracts were tested for their radical scavenging activity (DPPH and ABTS assays) and reducing power using the Folin–Ciocalteau method. Lapins and Sweetheart extracts, richer in phenolic compounds, returned the highest reducing power and radical scavenging capacity. Finally, a Factorial Analysis was applied to the collected data allowing reliable correlations between phenolics and antioxidant indexes
    • …
    corecore