1,319 research outputs found
Bounds on the basic physical parameters for anisotropic compact general relativistic objects
We derive upper and lower limits for the basic physical parameters
(mass-radius ratio, anisotropy, redshift and total energy) for arbitrary
anisotropic general relativistic matter distributions in the presence of a
cosmological constant. The values of these quantities are strongly dependent on
the value of the anisotropy parameter (the difference between the tangential
and radial pressure) at the surface of the star. In the presence of the
cosmological constant, a minimum mass configuration with given anisotropy does
exist. Anisotropic compact stellar type objects can be much more compact than
the isotropic ones, and their radii may be close to their corresponding
Schwarzschild radii. Upper bounds for the anisotropy parameter are also
obtained from the analysis of the curvature invariants. General restrictions
for the redshift and the total energy (including the gravitational
contribution) for anisotropic stars are obtained in terms of the anisotropy
parameter. Values of the surface redshift parameter greater than two could be
the main observational signature for anisotropic stellar type objects.Comment: 18 pages, no figures, accepted for publication in CQ
Origin of non-exponential relaxation in a crystalline ionic conductor: a multi-dimensional 109Ag NMR study
The origin of the non-exponential relaxation of silver ions in the
crystalline ion conductor Ag7P3S11 is analyzed by comparing appropriate
two-time and three-time 109Ag NMR correlation functions. The non-exponentiality
is due to a rate distribution, i.e., dynamic heterogeneities, rather than to an
intrinsic non-exponentiality. Thus, the data give no evidence for the relevance
of correlated back-and-forth jumps on the timescale of the silver relaxation.Comment: 4 pages, 3 figure
Physics of dark energy particles
We consider the astrophysical and cosmological implications of the existence
of a minimum density and mass due to the presence of the cosmological constant.
If there is a minimum length in nature, then there is an absolute minimum mass
corresponding to a hypothetical particle with radius of the order of the Planck
length. On the other hand, quantum mechanical considerations suggest a
different minimum mass. These particles associated with the dark energy can be
interpreted as the ``quanta'' of the cosmological constant. We study the
possibility that these particles can form stable stellar-type configurations
through gravitational condensation, and their Jeans and Chandrasekhar masses
are estimated. From the requirement of the energetic stability of the minimum
density configuration on a macroscopic scale one obtains a mass of the order of
10^55 g, of the same order of magnitude as the mass of the universe. This mass
can also be interpreted as the Jeans mass of the dark energy fluid. Furthermore
we present a representation of the cosmological constant and of the total mass
of the universe in terms of `classical' fundamental constants.Comment: 10 pages, no figures; typos corrected, 4 references added; 1
reference added; reference added; entirely revised version, contains new
parts, now 14 page
Extra force in modified theories of gravity
The equation of motion for test particles in modified theories of
gravity is derived. By considering an explicit coupling between an arbitrary
function of the scalar curvature, , and the Lagrangian density of matter, it
is shown that an extra force arises. This extra force is orthogonal to the
four-velocity and the corresponding acceleration law is obtained in the weak
field limit. Connections with MOND and with the Pioneer anomaly are further
discussed.Comment: Revtex4 file, 5 pages. Version to appear in Physical Review
Characterization of the glass transition in vitreous silica by temperature scanning small-angle X-ray scattering
The temperature dependence of the x-ray scattering in the region below the
first sharp diffraction peak was measured for silica glasses with low and high
OH content (GE-124 and Corning 7980). Data were obtained upon scanning the
temperature at 10, 40 and 80 K/min between 400 K and 1820 K. The measurements
resolve, for the first time, the hysteresis between heating and cooling through
the glass transition for silica glass, and the data have a better signal to
noise ratio than previous light scattering and differential thermal analysis
data. For the glass with the higher hydroxyl concentration the glass transition
is broader and at a lower temperature. Fits of the data to the
Adam-Gibbs-Fulcher equation provide updated kinetic parameters for this very
strong glass. The temperature derivative of the observed X-ray scattering
matches that of light scattering to within 14%.Comment: EurophysicsLetters, in pres
Ion and polymer dynamics in polymer electrolytes PPO-LiClO4: II. 2H and 7Li NMR stimulated-echo experiment
We use 2H NMR stimulated-echo spectroscopy to measure two-time correlation
functions characterizing the polymer segmental motion in polymer electrolytes
PPO-LiClO4 near the glass transition temperature Tg. To investigate effects of
the salt on the polymer dynamics, we compare results for different ether oxygen
to lithium ratios, namely, 6:1, 15:1, 30:1 and infinity. For all compositions,
we find nonexponential correlation functions, which can be described by a
Kohlrausch function. The mean correlation times show quantitatively that an
increase of the salt concentration results in a strong slowing down of the
segmental motion. Consistently, for the high 6:1 salt concentration, a high
apparent activation energy E_a=4.1eV characterizes the temperature dependence
of the mean correlation times at Tg < T< 1.1T_g, while smaller values E_a=2.5eV
are observed for moderate salt contents. The correlation functions are most
nonexponential for 15:1 PPO-LiClO4, whereas the stretching is reduced for
higher and lower salt concentrations. A similar dependence of the correlation
functions on the evolution time in the presence and in the absence of ions
indicates that addition of salt hardly affects the reorientational mechanism.
For all compositions, mean jump angles of about 15 degree characterize the
segmental reorientation. In addition, comparison of results from 2H and 7Li NMR
stimulated-echo experiments suggests a coupling of ion and polymer dynamics in
15:1 PPO-LiClO4.Comment: 14 pages, 12 figure
Reply to ``Comment on `Hole-burning experiments within glassy models with infinite range interactions' ''
This is a reply to the comments by Richter and Chamberlin, and Diezemann and
Bohmer to our paper (Phys. Rev. Lett. 85, 3448 (2000)). As further evidence for
the claims in this Letter, we here reproduce the nonlinear spectral
hole-burning experimental protocol in an equilibrated fully connected
spin-glass model and we exhibit frequency selectivity, together with a shift in
the base of the spectral hole.Comment: 1 page, two figures, to appear in Phys. Rev. Let
Temperature dependence of spatially heterogeneous dynamics in a model of viscous silica
Molecular dynamics simulations are performed to study spatially heterogeneous
dynamics in a model of viscous silica above and below the critical temperature
of the mode coupling theory, . Specifically, we follow the evolution
of the dynamic heterogeneity as the temperature dependence of the transport
coefficients shows a crossover from non-Arrhenius to Arrhenius behavior when
the melt is cooled. It is demonstrated that, on intermediate time scales, a
small fraction of oxygen and silicon atoms are more mobile than expected from a
Gaussian approximation. These highly mobile particles form transient clusters
larger than that resulting from random statistics, indicating that dynamics are
spatially heterogeneous. An analysis of the clusters reveals that the mean
cluster size is maximum at times intermediate between ballistic and diffusive
motion, and the maximum size increases with decreasing temperature. In
particular, the growth of the clusters continues when the transport
coefficients follow an Arrhenius law. These findings imply that the structural
relaxation in silica cannot be understood as a statistical bond breaking
process. Though the mean cluster sizes for silica are at the lower end of the
spectrum of values reported in the literature, we find that spatially
heterogeneous dynamics in strong and fragile glass formers are similar on a
qualitative level. However, different from results for fragile liquids, we show
that correlated particle motion along quasi one-dimensional, string-like paths
is of little importance for the structural relaxation in this model of silica,
suggesting that string-like motion is suppressed by the presence of covalent
bonds.Comment: 13 pages, 11 figure
- …