2,998 research outputs found

    Asymptotic Level Density of the Elastic Net Self-Organizing Feature Map

    Full text link
    Whileas the Kohonen Self Organizing Map shows an asymptotic level density following a power law with a magnification exponent 2/3, it would be desired to have an exponent 1 in order to provide optimal mapping in the sense of information theory. In this paper, we study analytically and numerically the magnification behaviour of the Elastic Net algorithm as a model for self-organizing feature maps. In contrast to the Kohonen map the Elastic Net shows no power law, but for onedimensional maps nevertheless the density follows an universal magnification law, i.e. depends on the local stimulus density only and is independent on position and decouples from the stimulus density at other positions.Comment: 8 pages, 10 figures. Link to publisher under http://link.springer.de/link/service/series/0558/bibs/2415/24150939.ht

    Parameter estimation in pair hidden Markov models

    Full text link
    This paper deals with parameter estimation in pair hidden Markov models (pair-HMMs). We first provide a rigorous formalism for these models and discuss possible definitions of likelihoods. The model being biologically motivated, some restrictions with respect to the full parameter space naturally occur. Existence of two different Information divergence rates is established and divergence property (namely positivity at values different from the true one) is shown under additional assumptions. This yields consistency for the parameter in parametrization schemes for which the divergence property holds. Simulations illustrate different cases which are not covered by our results.Comment: corrected typo

    A New Simulated Annealing Algorithm for the Multiple Sequence Alignment Problem: The approach of Polymers in a Random Media

    Full text link
    We proposed a probabilistic algorithm to solve the Multiple Sequence Alignment problem. The algorithm is a Simulated Annealing (SA) that exploits the representation of the Multiple Alignment between DD sequences as a directed polymer in DD dimensions. Within this representation we can easily track the evolution in the configuration space of the alignment through local moves of low computational cost. At variance with other probabilistic algorithms proposed to solve this problem, our approach allows for the creation and deletion of gaps without extra computational cost. The algorithm was tested aligning proteins from the kinases family. When D=3 the results are consistent with those obtained using a complete algorithm. For D>3D>3 where the complete algorithm fails, we show that our algorithm still converges to reasonable alignments. Moreover, we study the space of solutions obtained and show that depending on the number of sequences aligned the solutions are organized in different ways, suggesting a possible source of errors for progressive algorithms.Comment: 7 pages and 11 figure

    On the Disambiguation of Weighted Automata

    Full text link
    We present a disambiguation algorithm for weighted automata. The algorithm admits two main stages: a pre-disambiguation stage followed by a transition removal stage. We give a detailed description of the algorithm and the proof of its correctness. The algorithm is not applicable to all weighted automata but we prove sufficient conditions for its applicability in the case of the tropical semiring by introducing the *weak twins property*. In particular, the algorithm can be used with all acyclic weighted automata, relevant to applications. While disambiguation can sometimes be achieved using determinization, our disambiguation algorithm in some cases can return a result that is exponentially smaller than any equivalent deterministic automaton. We also present some empirical evidence of the space benefits of disambiguation over determinization in speech recognition and machine translation applications

    Assessing symmetry of financial returns series

    Full text link
    Testing symmetry of a probability distribution is a common question arising from applications in several fields. Particularly, in the study of observables used in the analysis of stock market index variations, the question of symmetry has not been fully investigated by means of statistical procedures. In this work a distribution-free test statistic Tn for testing symmetry, derived by Einmahl and McKeague, based on the empirical likelihood approach, is used to address the study of symmetry of financial returns. The asymptotic points of the test statistic Tn are also calculated and a procedure for assessing symmetry for the analysis of the returns of stock market indices is presented.Comment: Econophysics paper. 6 pages 2 figure

    Addition-Deletion Networks

    Full text link
    We study structural properties of growing networks where both addition and deletion of nodes are possible. Our model network evolves via two independent processes. With rate r, a node is added to the system and this node links to a randomly selected existing node. With rate 1, a randomly selected node is deleted, and its parent node inherits the links of its immediate descendants. We show that the in-component size distribution decays algebraically, c_k ~ k^{-beta}, as k-->infty. The exponent beta=2+1/(r-1) varies continuously with the addition rate r. Structural properties of the network including the height distribution, the diameter of the network, the average distance between two nodes, and the fraction of dangling nodes are also obtained analytically. Interestingly, the deletion process leads to a giant hub, a single node with a macroscopic degree whereas all other nodes have a microscopic degree.Comment: 8 pages, 5 figure

    Female Faculty: Why So Few and Why Care?

    Get PDF
    Despite slow ongoing progress in increasing the representation of women in academia, women remain significantly under-represented at senior levels, in particular in the natural sciences and engineering. Not infrequently, this is downplayed by bringing forth arguments such as inherent biological differences between genders, that current policies are adequate to address the issue, or by deflecting this as being “not my problem” among other examples. In this piece we present scientific evidence that counters these claims, as well as a best-practice example, Genie, from Chalmers University of Technology, where one of the authors is currently employed. We also highlight particular challenges caused by the current COVID-19 pandemic. Finally, we conclude by proposing some possible solutions to the situation and emphasize that we need to all do our part, to ensure that the next generation of academics experience a more diverse, inclusive, and equitable working environment

    Genetic Correlations in Mutation Processes

    Full text link
    We study the role of phylogenetic trees on correlations in mutation processes. Generally, correlations decay exponentially with the generation number. We find that two distinct regimes of behavior exist. For mutation rates smaller than a critical rate, the underlying tree morphology is almost irrelevant, while mutation rates higher than this critical rate lead to strong tree-dependent correlations. We show analytically that identical critical behavior underlies all multiple point correlations. This behavior generally characterizes branching processes undergoing mutation.Comment: revtex, 8 pages, 2 fig
    • …
    corecore