1,420 research outputs found

    Adiabatic Motion of a Quantum Particle in a Two-Dimensional Magnetic Field

    Get PDF
    The adiabatic motion of a charged, spinning, quantum particle in a two - dimensional magnetic field is studied. A suitable set of operators generalizing the cinematical momenta and the guiding center operators of a particle moving in a homogeneous magnetic field is constructed. This allows us to separate the two degrees of freedom of the system into a {\sl fast} and a {\sl slow} one, in the classical limit, the rapid rotation of the particle around the guiding center and the slow guiding center drift. In terms of these operators the Hamiltonian of the system rewrites as a power series in the magnetic length \lb=\sqrt{\hbar c\over eB} and the fast and slow dynamics separates. The effective guiding center Hamiltonian is obtained to the second order in the adiabatic parameter \lb and reproduces correctly the classical limit.Comment: 17 pages, LaTe

    Opportunities With Decay-At-Rest Neutrinos From Decay-In-Flight Neutrino Beams

    Full text link
    Neutrino beam facilities, like spallation neutron facilities, produce copious quantities of neutrinos from the decay at rest of mesons and muons. The viability of decay-in-flight neutrino beams as sites for decay-at-rest neutrino studies has been investigated by calculating expected low-energy neutrino fluxes from the existing Fermilab NuMI beam facility. Decay-at-rest neutrino production in NuMI is found to be roughly equivalent per megawatt to that of spallation facilities, and is concentrated in the facility's target hall and beam stop regions. Interaction rates in 5 and 60 ton liquid argon detectors at a variety of existing and hypothetical locations along the beamline are found to be comparable to the largest existing decay-at-rest datasets for some channels. The physics implications and experimental challenges of such a measurement are discussed, along with prospects for measurements at targeted facilities along a future Fermilab long-baseline neutrino beam.Comment: 6 pages, 3 figure

    Quantum Charged Spinning Particles in a Strong Magnetic Field (a Quantal Guiding Center Theory)

    Get PDF
    A quantal guiding center theory allowing to systematically study the separation of the different time scale behaviours of a quantum charged spinning particle moving in an external inhomogeneous magnetic filed is presented. A suitable set of operators adapting to the canonical structure of the problem and generalizing the kinematical momenta and guiding center operators of a particle coupled to a homogenous magnetic filed is constructed. The Pauli Hamiltonian rewrites in this way as a power series in the magnetic length lB=â„Źc/eBl_B= \sqrt{\hbar c/eB} making the problem amenable to a perturbative analysis. The first two terms of the series are explicitly constructed. The effective adiabatic dynamics turns to be in coupling with a gauge filed and a scalar potential. The mechanism producing such magnetic-induced geometric-magnetism is investigated in some detail.Comment: LaTeX (epsfig macros), 27 pages, 2 figures include

    Diagonalization of multicomponent wave equations with a Born-Oppenheimer example

    Get PDF
    A general method to decouple multicomponent linear wave equations is presented. First, the Weyl calculus is used to transform operator relations into relations between c-number valued matrices. Then it is shown that the symbol representing the wave operator can be diagonalized systematically up to arbitrary order in an appropriate expansion parameter. After transforming the symbols back to operators, the original problem is reduced to solving a set of linear uncoupled scalar wave equations. The procedure is exemplified for a particle with a Born-Oppenheimer-type Hamiltonian valid through second order in h. The resulting effective scalar Hamiltonians are seen to contain an additional velocity-dependent potential. This contribution has not been reported in recent studies investigating the adiabatic motion of a neutral particle moving in an inhomogeneous magnetic field. Finally, the relation of the general method to standard quantum-mechanical perturbation theory is discussed
    • …
    corecore