9,293 research outputs found

    Volume Weighted Measures of Eternal Inflation in the Bousso-Polchinski Landscape

    Get PDF
    We consider the cosmological dynamics associated with volume weighted measures of eternal inflation, in the Bousso-Polchinski model of the string theory landscape. We find that this measure predicts that observers are most likely to find themselves in low energy vacua with one flux considerably larger than the rest. Furthermore, it allows for a satisfactory anthropic explanation of the cosmological constant problem by producing a smooth, and approximately constant, distribution of potentially observable values of Lambda. The low energy vacua selected by this measure are often short lived. If we require anthropically acceptable vacua to have a minimum life-time of 10 billion years, then for reasonable parameters a typical observer should expect their vacuum to have a life-time of approximately 12 billion years. This prediction is model dependent, but may point toward a solution to the coincidence problem of cosmology.Comment: 35 pages, 8 figure

    A Toy Model for Open Inflation

    Full text link
    The open inflation scenario based on the theory of bubble formation in the models of a single scalar field suffered from a fatal defect. In all the versions of this scenario known so far, the Coleman-De Luccia instantons describing the creation of an open universe did not exist. We propose a simple one-field model where the CDL instanton does exist and the open inflation scenario can be realized.Comment: 7 pages, 4 figures, revtex, a discussion of density perturbations is extende

    Towards a gauge invariant volume-weighted probability measure for eternal inflation

    Full text link
    An improved volume-weighted probability measure for eternal inflation is proposed. For the models studied in this paper it leads to simple and intuitively expected gauge-invariant results.Comment: 16 pages, 3 figs, few misprints corrected, comments adde

    End of multi-field inflation and the perturbation spectrum

    Full text link
    We investigate the dynamics of inflation models driven by multiple, decoupled scalar fields and calculate the Hubble parameter and the amplitude of the lightest field at the end of inflation which may be responsible for interesting, or possibly dangerous cosmological consequences after inflation. The results are very simple and similar to those of the single field inflation, mainly depend on the underlying spectrum of the masses. The mass distribution is heavily constrained by the power spectrum of density perturbations P and the spectral index n. The overall mass scale gives the amplitude of P, and n is affected by the number of fields and the spacing between masses in the distribution. The drop-out effect of the massive fields makes the perturbation spectrum typically redder than the single field inflation spectrum. We illustrate this using two different mass distributions.Comment: (v1) 16 pages, 5 figures, 3 tables; (v2) 17 pages, references added, typos corrected; (v3) references added, typos corrected; (v4) 16 pages, typos corrected, Table 1 expanded and Table 3 removed, Figs. 2 and 3 reduced, to appear in Physical Review

    False Vacuum Chaotic Inflation: The New Paradigm?

    Get PDF
    Recent work is reported on inflation model building in the context of supergravity and superstrings, with special emphasis on False Vacuum (`Hybrid') Chaotic Inflation. Globally supersymmetric models do not survive in generic supergravity theories, but fairly simple conditions can be formulated which do ensure successful supergravity inflation. The conditions are met in some of the versions of supergravity that emerge from superstrings.Comment: 4 pages, LATEX, LANCASTER-TH 94-1

    Pre-Big-Bang Requires the Universe to be Exponentially Large From the Very Beginning

    Get PDF
    We show that in a generic case of the pre-big-bang scenario, inflation will solve cosmological problems only if the universe at the onset of inflation is extremely large and homogeneous from the very beginning. The size of a homogeneous part of the universe at the beginning of the stage of pre-big-bang (PBB) inflation must be greater than 101910^{19} lsl_s, where lsl_s is the stringy length. The total mass of an inflationary domain must be greater than 1072Ms10^{72} M_{s}, where Ms∌ls−1M_{s} \sim l_s^{-1}. If the universe is initially radiation dominated, then its total entropy at that time must be greater than 106810^{68}. If the universe is closed, then at the moment of its formation it must be uniform over 102410^{24} causally disconnected domains. The natural duration of the PBB stage in this scenario is Mp−1M_p^{-1}. We argue that the initial state of the open PBB universe could not be homogeneous because of quantum fluctuations. Independently of the issue of homogeneity, one must introduce two large dimensionless parameters, g0−2>1053g_0^{-2} > 10^{53}, and B>1091B > 10^{91}, in order to solve the flatness problem in the PBB cosmology. A regime of eternal inflation does not occur in the PBB scenario. This should be compared with the simplest versions of the chaotic inflation scenario, where the regime of eternal inflation may begin in a universe of size O(Mp−1)O(M_{p}^{-1}) with vanishing initial radiation entropy, mass O(Mp)O(M_p), and geometric entropy O(1). We conclude that the current version of the PBB scenario cannot replace usual inflation even if one solves the graceful exit problem in this scenario.Comment: 14 pages, a discussion of the flatness problem in the PBB cosmology is adde

    Inflation and Large Internal Dimensions

    Full text link
    We consider some aspects of inflation in models with large internal dimensions. If inflation occurs on a 3D wall after the stabilization of internal dimensions in the models with low unification scale (M ~ 1 TeV), the inflaton field must be extremely light. This problem may disappear In models with intermediate (M ~10^{11} GeV) to high (M ~ 10^{16} GeV) unification scale. However, in all of these cases the wall inflation does not provide a complete solution to the horizon and flatness problems. To solve them, there must be a stage of inflation in the bulk before the compactification of internal dimensions.Comment: 4 pages, revtex, minor modification

    Nitrogen removal during summer and winter in a primary facultative WSP pond: preliminary findings from 15N-labelled ammonium tracking techniques

    Get PDF
    Nitrogen removal mechanisms and pathways within WSP have been the focus of much research over the last 30 years. Debates and theories postulated continue to refine our knowledge regarding the cycling and removal pathways for this important nutrient, but a succinct answer has yet to be provided for holistic nitrogen removal. In this study, two experimental runs using labelled 15N as a stable isotope tracking technique were conducted on a pilot-scale primary facultative WSP in the UK; one in the summer of 2006, and the other in the winter of 2007. An ammonium chloride (15NH4Cl) spike was prepared as the slug for each experimental run, which also contained rhodamine WT to act as a dye tracer enabling the hydraulic characteristics of the pond to be mapped. Initial results from the study are reported here, and findings are compared and contrasted. Preliminary findings reveal that a greater proportion of 15N is incorporated into the algal biomass by assimilation and subsequent release as soluble organic nitrogen in summer than in winter. 15N ammonium passes out of the system much sooner and in a much higher proportion in the winter than in summer

    Photographing the wave function of the Universe

    Get PDF
    We show that density fluctuations in standard inflationary scenarios may take the most general non-Gaussian distribution if the wave function of the Universe is not in the ground state. We adopt the Schr\"odinger picture to find a remarkable similarity between the most general inflaton wavefunction and the Edgeworth expansion used in probability theory. Hence we arrive at an explicit relation between the cumulants of the density fluctuations and the amplitudes or occupation numbers of the various energy eigenstates. For incoherent superpositions only even cumulants may be non-zero, but coherent superpositions may generate non-zero odd cumulants as well. Within this framework measurements of cumulants in Galaxy surveys directly map the wavefunction of the Universe.Comment: Replaced with revised version Latex, 10 pages., accepted for publication in Phys. Lett.

    Topological Defects as Seeds for Eternal Inflation

    Full text link
    We investigate the global structure of inflationary universe both by analytical methods and by computer simulations of stochastic processes in the early Universe. We show that the global structure of the universe depends crucially on the mechanism of inflation. In the simplest models of chaotic inflation the Universe looks like a sea of thermalized phase surrounding permanently self-reproducing inflationary domains. In the theories where inflation occurs near a local extremum of the effective potential corresponding to a metastable state, the Universe looks like de Sitter space surrounding islands of thermalized phase. A similar picture appears even if the state ϕ=0\phi = 0 is unstable but the effective potential has a discrete symmetry ϕ→=−ϕ\phi \to =-\phi. In this case the Universe becomes divided into domains containing different phases. These domains will be separated from each other by domain walls. However, unlike ordinary domain walls, these domain walls will inflate, and their thickness will exponentially grow. In the theories with continuous symmetries inflation generates exponentially expanding strings and monopoles surrounded by thermalized phase. Inflating topological defects will be stable, and they will unceasingly produce new inflating topological defects. This means that topological defects may play a role of indestructible seeds for eternal inflation.Comment: 21 pages, 17 figures (not included), Stanford University preprint SU--ITP--94--
    • 

    corecore