9,293 research outputs found
Volume Weighted Measures of Eternal Inflation in the Bousso-Polchinski Landscape
We consider the cosmological dynamics associated with volume weighted
measures of eternal inflation, in the Bousso-Polchinski model of the string
theory landscape. We find that this measure predicts that observers are most
likely to find themselves in low energy vacua with one flux considerably larger
than the rest. Furthermore, it allows for a satisfactory anthropic explanation
of the cosmological constant problem by producing a smooth, and approximately
constant, distribution of potentially observable values of Lambda. The low
energy vacua selected by this measure are often short lived. If we require
anthropically acceptable vacua to have a minimum life-time of 10 billion years,
then for reasonable parameters a typical observer should expect their vacuum to
have a life-time of approximately 12 billion years. This prediction is model
dependent, but may point toward a solution to the coincidence problem of
cosmology.Comment: 35 pages, 8 figure
A Toy Model for Open Inflation
The open inflation scenario based on the theory of bubble formation in the
models of a single scalar field suffered from a fatal defect. In all the
versions of this scenario known so far, the Coleman-De Luccia instantons
describing the creation of an open universe did not exist. We propose a simple
one-field model where the CDL instanton does exist and the open inflation
scenario can be realized.Comment: 7 pages, 4 figures, revtex, a discussion of density perturbations is
extende
Towards a gauge invariant volume-weighted probability measure for eternal inflation
An improved volume-weighted probability measure for eternal inflation is
proposed. For the models studied in this paper it leads to simple and
intuitively expected gauge-invariant results.Comment: 16 pages, 3 figs, few misprints corrected, comments adde
End of multi-field inflation and the perturbation spectrum
We investigate the dynamics of inflation models driven by multiple, decoupled
scalar fields and calculate the Hubble parameter and the amplitude of the
lightest field at the end of inflation which may be responsible for
interesting, or possibly dangerous cosmological consequences after inflation.
The results are very simple and similar to those of the single field inflation,
mainly depend on the underlying spectrum of the masses. The mass distribution
is heavily constrained by the power spectrum of density perturbations P and the
spectral index n. The overall mass scale gives the amplitude of P, and n is
affected by the number of fields and the spacing between masses in the
distribution. The drop-out effect of the massive fields makes the perturbation
spectrum typically redder than the single field inflation spectrum. We
illustrate this using two different mass distributions.Comment: (v1) 16 pages, 5 figures, 3 tables; (v2) 17 pages, references added,
typos corrected; (v3) references added, typos corrected; (v4) 16 pages, typos
corrected, Table 1 expanded and Table 3 removed, Figs. 2 and 3 reduced, to
appear in Physical Review
False Vacuum Chaotic Inflation: The New Paradigm?
Recent work is reported on inflation model building in the context of
supergravity and superstrings, with special emphasis on False Vacuum (`Hybrid')
Chaotic Inflation. Globally supersymmetric models do not survive in generic
supergravity theories, but fairly simple conditions can be formulated which do
ensure successful supergravity inflation. The conditions are met in some of the
versions of supergravity that emerge from superstrings.Comment: 4 pages, LATEX, LANCASTER-TH 94-1
Pre-Big-Bang Requires the Universe to be Exponentially Large From the Very Beginning
We show that in a generic case of the pre-big-bang scenario, inflation will
solve cosmological problems only if the universe at the onset of inflation is
extremely large and homogeneous from the very beginning. The size of a
homogeneous part of the universe at the beginning of the stage of pre-big-bang
(PBB) inflation must be greater than , where is the
stringy length. The total mass of an inflationary domain must be greater than
, where . If the universe is initially
radiation dominated, then its total entropy at that time must be greater than
. If the universe is closed, then at the moment of its formation it
must be uniform over causally disconnected domains. The natural
duration of the PBB stage in this scenario is . We argue that the
initial state of the open PBB universe could not be homogeneous because of
quantum fluctuations. Independently of the issue of homogeneity, one must
introduce two large dimensionless parameters, , and , in order to solve the flatness problem in the PBB cosmology. A regime
of eternal inflation does not occur in the PBB scenario. This should be
compared with the simplest versions of the chaotic inflation scenario, where
the regime of eternal inflation may begin in a universe of size
with vanishing initial radiation entropy, mass , and geometric entropy
O(1). We conclude that the current version of the PBB scenario cannot replace
usual inflation even if one solves the graceful exit problem in this scenario.Comment: 14 pages, a discussion of the flatness problem in the PBB cosmology
is adde
Inflation and Large Internal Dimensions
We consider some aspects of inflation in models with large internal
dimensions. If inflation occurs on a 3D wall after the stabilization of
internal dimensions in the models with low unification scale (M ~ 1 TeV), the
inflaton field must be extremely light. This problem may disappear In models
with intermediate (M ~10^{11} GeV) to high (M ~ 10^{16} GeV) unification scale.
However, in all of these cases the wall inflation does not provide a complete
solution to the horizon and flatness problems. To solve them, there must be a
stage of inflation in the bulk before the compactification of internal
dimensions.Comment: 4 pages, revtex, minor modification
Nitrogen removal during summer and winter in a primary facultative WSP pond: preliminary findings from 15N-labelled ammonium tracking techniques
Nitrogen removal mechanisms and pathways within WSP have been the focus of much research over the last 30 years. Debates and theories postulated continue to refine our knowledge regarding the cycling and removal pathways for this important nutrient, but a succinct answer has yet to be provided for holistic nitrogen removal. In this study, two experimental runs using labelled 15N as a stable isotope tracking technique were conducted on a pilot-scale primary facultative WSP in the UK; one in the summer of 2006, and the other in the winter of 2007. An ammonium chloride (15NH4Cl) spike was prepared as the slug for each experimental run, which also contained rhodamine WT to act as a dye tracer enabling the hydraulic characteristics of the pond to be mapped. Initial results from the study are reported here, and findings are compared and contrasted. Preliminary findings reveal that a greater proportion of 15N is incorporated into the algal biomass by assimilation and subsequent release as soluble organic nitrogen in summer than in winter. 15N ammonium passes out of the system much sooner and in a much higher proportion in the winter than in summer
Photographing the wave function of the Universe
We show that density fluctuations in standard inflationary scenarios may take
the most general non-Gaussian distribution if the wave function of the Universe
is not in the ground state. We adopt the Schr\"odinger picture to find a
remarkable similarity between the most general inflaton wavefunction and the
Edgeworth expansion used in probability theory. Hence we arrive at an explicit
relation between the cumulants of the density fluctuations and the amplitudes
or occupation numbers of the various energy eigenstates. For incoherent
superpositions only even cumulants may be non-zero, but coherent superpositions
may generate non-zero odd cumulants as well. Within this framework measurements
of cumulants in Galaxy surveys directly map the wavefunction of the Universe.Comment: Replaced with revised version Latex, 10 pages., accepted for
publication in Phys. Lett.
Topological Defects as Seeds for Eternal Inflation
We investigate the global structure of inflationary universe both by
analytical methods and by computer simulations of stochastic processes in the
early Universe. We show that the global structure of the universe depends
crucially on the mechanism of inflation. In the simplest models of chaotic
inflation the Universe looks like a sea of thermalized phase surrounding
permanently self-reproducing inflationary domains. In the theories where
inflation occurs near a local extremum of the effective potential corresponding
to a metastable state, the Universe looks like de Sitter space surrounding
islands of thermalized phase. A similar picture appears even if the state is unstable but the effective potential has a discrete symmetry . In this case the Universe becomes divided into domains containing
different phases. These domains will be separated from each other by domain
walls. However, unlike ordinary domain walls, these domain walls will inflate,
and their thickness will exponentially grow. In the theories with continuous
symmetries inflation generates exponentially expanding strings and monopoles
surrounded by thermalized phase. Inflating topological defects will be stable,
and they will unceasingly produce new inflating topological defects. This means
that topological defects may play a role of indestructible seeds for eternal
inflation.Comment: 21 pages, 17 figures (not included), Stanford University preprint
SU--ITP--94--
- âŠ