130 research outputs found

    A simple, ultrahigh vacuum compatible scanning tunneling microscope for use at variable temperatures

    Get PDF
    We present the construction of a very compact scanning tunneling microscope (STM) which can be operated at temperatures between 4 and 350 K. The tip and a tiny tip holder are the only movable parts, whereas the sample and the piezoscanner are rigidly attached to the body of the STM. This leads to an excellent mechanical stability. The coarse approach system relies on the slip-stick principle and is operated by the same piezotube which is used for scanning. As an example of the performance of the device, images of a NbSe2 surface with atomic resolution are obtained

    On ultrafast magnetic flux dendrite propagation into thin superconducting films

    Full text link
    We suggest a new theoretical approach describing the velocity of magnetic flux dendrite penetration into thin superconducting films. The key assumptions for this approach are based upon experimental observations. We treat a dendrite tip motion as a propagating flux jump instability. Two different regimes of dendrite propagation are found. A fast initial stage is followed by a slow stage, which sets in as soon as a dendrite enters into the vortex-free region. We find that the dendrite velocity is inversely proportional to the sample thickness. The theoretical results and experimental data obtained by a magneto-optic pump-probe technique are compared and excellent agreement between the calculations and measurements is found.Comment: 4 pages, 4 figure

    Critical Casimir effect and wetting by helium mixtures

    Get PDF
    We have measured the contact angle of the interface of phase-separated 3^{3}He-4^{4}He mixtures against a sapphire window. We have found that this angle is finite and does not tend to zero when the temperature approaches TtT_t, the temperature of the tri-critical point. On the contrary, it increases with temperature. This behavior is a remarkable exception to what is generally observed near critical points, i.e. "critical point wetting''. We propose that it is a consequence of the "critical Casimir effect'' which leads to an effective attraction of the 3^{3}He-4^{4}He interface by the sapphire near TtT_{t}.Comment: submitted july 13 (2002), published march 20 (2003

    Metallic nanowires and mesoscopic networks on a free surface of superfluid helium and charge-shuttling across the liquid-gas interface

    Get PDF
    © 2016 the Owner Societies.We investigate the motion of electrically charged metallic nano- and microparticles produced by laser ablation in He gas and injected into superfluid helium. In the presence of a vertical static electric field, the particles either perform a repetitive shuttle-like motion transporting the charge across the liquid-gas interface or become trapped under the free surface of liquid He and coalesce into long filaments and complex two-dimensional mesoscopic networks. A classical electrohydrodynamic model is used to describe the motion of charged microparticles in superfluid He. The resulting filaments and networks are analyzed using electron microscopy. It is demonstrated that each filament is in fact composed of a large number of nanowires with a characteristic diameter of order of 10 nm and extremely large aspect ratios

    Classical double-layer atoms: artificial molecules

    Full text link
    The groundstate configuration and the eigenmodes of two parallel two-dimensional classical atoms are obtained as function of the inter-atomic distance (d). The classical particles are confined by identical harmonic wells and repel each other through a Coulomb potential. As function of d we find several structural transitions which are of first or second order. For first (second) order transitions the first (second) derivative of the energy with respect to d is discontinuous, the radial position of the particles changes discontinuously (continuously) and the frequency of the eigenmodes exhibit a jump (one mode becomes soft, i.e. its frequency becomes zero).Comment: 4 pages, RevTex, 5 ps figures, to appear in Phys.Rev.Let

    Crystalline Order on a Sphere and the Generalized Thomson Problem

    Get PDF
    We attack generalized Thomson problems with a continuum formalism which exploits a universal long range interaction between defects depending on the Young modulus of the underlying lattice. Our predictions for the ground state energy agree with simulations of long range power law interactions of the form 1/r^{gamma} (0 < gamma < 2) to four significant digits. The regime of grain boundaries is studied in the context of tilted crystalline order and the generality of our approach is illustrated with new results for square tilings on the sphere.Comment: 4 pages, 5 eps figures Fig. 2 revised, improved Fig. 3, reference typo fixe

    Structure and Melting of Two-Species Charged Clusters in a Parabolic Trap

    Full text link
    We consider a system of charged particles interacting with an unscreened Coulomb repulsion in a two-dimensional parabolic confining trap. The static charge on a portion of the particles is twice as large as the charge on the remaining particles. The particles separate into a shell structure with those of greater charge situated farther from the center of the trap. As we vary the ratio of the number of particles of the two species, we find that for certain configurations, the symmetry of the arrangement of the inner cluster of singly-charged particles matches the symmetry of the outer ring of doubly-charged particles. These matching configurations have a higher melting temperature and a higher thermal threshold for intershell rotation between the species than the nonmatching configurations.Comment: 4 pages, 6 postscript figure

    Flux Creep and Flux Jumping

    Full text link
    We consider the flux jump instability of the Bean's critical state arising in the flux creep regime in type-II superconductors. We find the flux jump field, BjB_j, that determines the superconducting state stability criterion. We calculate the dependence of BjB_j on the external magnetic field ramp rate, B˙e\dot B_e. We demonstrate that under the conditions typical for most of the magnetization experiments the slope of the current-voltage curve in the flux creep regime determines the stability of the Bean's critical state, {\it i.e.}, the value of BjB_j. We show that a flux jump can be preceded by the magneto-thermal oscillations and find the frequency of these oscillations as a function of B˙e\dot B_e.Comment: 7 pages, ReVTeX, 2 figures attached as postscript file

    Diffusive Spreading of Chainlike Molecules on Surfaces

    Full text link
    We study the diffusion and submonolayer spreading of chainlike molecules on surfaces. Using the fluctuating bond model we extract the collective and tracer diffusion coefficients D_c and D_t with a variety of methods. We show that D_c(theta) has unusual behavior as a function of the coverage theta. It first increases but after a maximum goes to zero as theta go to one. We show that the increase is due to entropic repulsion that leads to steep density profiles for spreading droplets seen in experiments. We also develop an analytic model for D_c(theta) which agrees well with the simulations.Comment: 3 pages, RevTeX, 4 postscript figures, to appear in Phys. Rev. Letters (1996

    Vortex microavalanches in superconducting Pb thin films

    Full text link
    Local magnetization measurements on 100 nm type-II superconducting Pb thin films show that flux penetration changes qualitatively with temperature. Small flux jumps at the lowest temperatures gradually increase in size, then disappear near T = 0.7Tc. Comparison with other experiments suggests that the avalanches correspond to dendritic flux protrusions. Reproducibility of the first flux jumps in a decreasing magnetic field indicates a role for defect structure in determining avalanches. We also find a temperature-independent final magnetization after flux jumps, analogous to the angle of repose of a sandpile.Comment: 6 pages, 5 figure
    corecore