4 research outputs found

    Crossing the phantom divide without phantom matter

    Get PDF
    A class of braneworld models can lead to phantom-like acceleration of the late universe, but without the need for any phantom matter. In the simplest models, the universe contains only cold dark matter and a cosmological constant. We generalize these models by introducing a quintessence field. The new feature in our models is that quintessence leads to a crossing of the phantom divide, w=1w=-1. This is a purely gravitational effect, and there is no phantom instability. Furthermore, the Hubble parameter is always decreasing, and there is no big rip singularity in the future.Comment: 5 pages, 5 figures, revtex

    Correspondence between kinematical backreaction and scalar field cosmologies - the `morphon field'

    Get PDF
    Spatially averaged inhomogeneous cosmologies in classical general relativity can be written in the form of effective Friedmann equations with sources that include backreaction terms. In this paper we propose to describe these backreaction terms with the help of a homogeneous scalar field evolving in a potential; we call it the `morphon field'. This new field links classical inhomogeneous cosmologies to scalar field cosmologies, allowing to reinterpret, e.g., quintessence scenarios by routing the physical origin of the scalar field source to inhomogeneities in the Universe. We investigate a one-parameter family of scaling solutions to the backreaction problem. Subcases of these solutions (all without an assumed cosmological constant) include scale-dependent models with Friedmannian kinematics that can mimic the presence of a cosmological constant or a time-dependent cosmological term. We explicitly reconstruct the scalar field potential for the scaling solutions, and discuss those cases that provide a solution to the Dark Energy and coincidence problems. In this approach, Dark Energy emerges from morphon fields, a mechanism that can be understood through the proposed correspondence: the averaged cosmology is characterized by a weak decay (quintessence) or growth (phantom quintessence) of kinematical fluctuations, fed by `curvature energy' that is stored in the averaged 3-Ricci curvature. We find that the late-time trajectories of those models approach attractors that lie in the future of a state that is predicted by observational constraints.Comment: 36 pages and 6 Figures, matches published version in Class.Quant.Gra

    Notes on interacting holographic dark energy model in a closed universe

    Full text link
    We consider interacting holographic dark energy model in Friedmann Robertson Walker space time with positive spatial curvature and investigate the behavior of curvature parameter and dark energy density in accelerated expanding epoch. We also derive some conditions needed to cross the phantom divide line in this model.Comment: 10 pages, typos corrected, some explanations and references added and updated, accepted for publication in JCA
    corecore