788 research outputs found

    Magma and fluid migration at Yellowstone Caldera in the last three decades inferred from InSAR, leveling and gravity measurements

    Get PDF
    We studied the Yellowstone caldera geological unrest between 1977 and 2010 by investigating temporal changes in differential Interferometric Synthetic Aperture Radar (InSAR), precise spirit leveling and gravity measurements. The analysis of the 1992–2010 displacement time series, retrieved by applying the SBAS InSAR technique, allowed the identification of three areas of deformation: (i) the Mallard Lake (ML) and Sour Creek (SC) resurgent domes, (ii) a region close to the Northern Caldera Rim (NCR), and (iii) the eastern Snake River Plain (SRP). While the eastern SRP shows a signal related to tectonic deformation, the other two regions are influenced by the caldera unrest. We removed the tectonic signal from the InSAR displacements, and we modeled the InSAR, leveling, and gravity measurements to retrieve the best fitting source parameters. Our findings confirmed the existence of different distinct sources, beneath the brittle-ductile transition zone, which have been intermittently active during the last three decades. Moreover, we interpreted our results in the light of existing seismic tomography studies. Concerning the SC dome, we highlighted the role of hydrothermal fluids as the driving force behind the 1977–1983 uplift; since 1983–1993 the deformation source transformed into a deeper one with a higher magmatic component. Furthermore, our results support the magmatic nature of the deformation source beneath ML dome for the overall investigated period. Finally, the uplift at NCR is interpreted as magma accumulation, while its subsidence could either be the result of fluids migration outside the caldera or the gravitational adjustment of the source from a spherical to a sill-like geometr

    DInSAR deformation time series for monitoring urban areas: The impact of the second generation SAR systems

    Get PDF
    We investigate the capability improvement of the DInSAR techniques to map deformation phenomena affecting urban areas, by performing a comparative analysis of the deformation time series retrieved by applying the full resolution Small BAseline Subset (SBAS) DInSAR technique to selected sequences of SAR data acquired by the ENVISAT, RADARSAT-1 and COSMO-SkyMed (CSK) SAR data. The presented study, focused on the city of Napoli (Italy), allows us to quantify the dramatic increase of the DInSAR coherent pixel density achieved by exploiting the high resolution X-Band CSK SAR images with respect to the RADARSAT-1 and ENVISAT products, respectively; this permits us to analyze nearly all the structures located within the investigated urbanized area and, in many cases, also portions of a same building. © 2012 IEEE

    Generation of large scale digital evaluation models via synthetic aperture radar interferometry

    Get PDF
    We investigate the possibility to generate a large-scale Digital Elevation Model by applying the Synthetic Aperture Radar interferometry technique and using tandem data acquired by the ERS-1/ERS-2 sensors. The presented study is mainly focused on the phase unwrapping step that represents the most critical point of the overall processing chain. In particular, we concentrate on the unwrapping problems related to the use of a large ERS tandem data set that, in order to be unwrapped, must be partitioned. The paper discusses the inclusion of external information (even rough) of the scene topography, the application of a region growing unwrapping technique and the insertion of possible constraints on the phase to be retrieved in order to minimize the global unwrapping errors. Our goal is the generation of a digital elevation model relative to an area of 300 km by 100km located in the southern part of Italy. Comparisons between the achieved result and a precise digital terrain model, relative to a smaller area, are also included

    Morpho-Tectonic Evolution of the Southern Apennines and Calabrian Arc: Insights From Pollino Range and Surrounding Extensional Intermontane Basins

    Get PDF
    The evolution of topography in forearc regions results from the complex interplay of crustal and mantle processes. The Southern Apennines represent a well-studied forearc region that experienced several tectonic phases, initially marked by compressional deformation followed by extension and large-scale uplift. We present a new structural, geomorphic and fluvial analysis of the Pollino Massif and surrounding intermontane basins (Mercure, Campotenese and Castrovillari) to unravel their evolution since the Pliocene. We constrain multiple tectonic transport directions, evolution of the drainage, and magnitude and timing of long-term incision following base level falls. Two sets of knickpoints suggest two phases of base level lowering and allow to estimate similar to 500 m of long-term uplift (late Pleistocene), as observed in the Sila Massif. On a smaller spatial scale, the evolution and formation of topographic relief, sedimentation, and opening of intermontane basins is strongly controlled by the recent increase in rock uplift rate and fault activity. At the regional scale, an along-strike, long-wavelength uplift pattern from north to south can be explained by progressive lateral slab tearing and inflow of asthenospheric mantle beneath Pollino and Sila, which in turn may have promoted extensional tectonics. The lower uplift of Le Serre Massif may be explained as result of weak plate coupling due to narrowing of the Calabrian slab. The onset of uplift in the Pollino Massif, ranging from 400 to 800 ka, is consistent with that one proposed in the southern Calabrian forearc, suggesting a possible synchronism of uplift, and lateral tearing of the Calabrian slab.Topographic evolution constrained by structural, geomorphic and river analysis of the Pollino range and surrounding extensional basins At short spatial scale, increase in rock uplift and fault activity controls the endorheic-exorheic transition At regional scale, uplift increases between 400 and 800 ka, due to progressive lateral slab tearing, and inflow asthenospheric mantl

    Volume unbalance on the 2016 Amatrice - Norcia (Central Italy) seismic sequence and insights on normal fault earthquake mechanism

    Get PDF
    We analyse the M w 6.5, 2016 Amatrice-Norcia (Central Italy) seismic sequence by means of InSAR, GPS, seismological and geologic data. The >1000 km 2 area affected by deformation is involving a volume of about 6000 km 3 and the relocated seismicity is widely distributed in the hangingwall of the master fault system and the conjugate antithetic faults. Noteworthy, the coseismically subsided hangingwall volume is about 0.12 km 3 , whereas the uplifted adjacent volumes uplifted only 0.016 km 3 . Therefore, the subsided volume was about 7.5 times larger than the uplifted one. The coseismic motion requires equivalent volume at depth absorbing the hangingwall downward movement. This unbalance regularly occurs in normal fault-related earthquakes and can be inferred as a significant contribution to coseismic strain accomodated by a stress-drop driven collapse of precursory dilatancy. The vertical coseismic displacement is in fact larger than the horizontal component, consistent with the vertical orientation of the maximum lithostatic stress tensor

    Uplift and magma intrusion at Long Valley caldera from InSAR and gravity measurements

    Get PDF
    The Long Valley caldera (California) formed ~760,000 yr ago following the massive eruption of the Bishop Tuff. Postcaldera volcanism in the Long Valley volcanic fi eld includes lava domes as young as 650 yr. The recent geological unrest is characterized by uplift of the resurgent dome in the central section of the caldera (75 cm in the past 33 yr) and earthquake activity followed by periods of relative quiescence. Since the spring of 1998, the caldera has been in a state of low activity. The cause of unrest is still debated, and hypotheses range from hybrid sources (e.g., magma with a high percentage of volatiles) to hydrothermal fl uid intrusion. Here, we present observations of surface deformation in the Long Valley region based on differential synthetic aperture radar interferometry (InSAR), leveling, global positioning system (GPS), two-color electronic distance meter (EDM), and microgravity data. Thanks to the joint application of InSAR and microgravity data, we are able to unambiguously determine that magma is the cause of unrest

    Using groundwater monitoring wells for rapid application of soil gas radon deficit technique to evaluate residual LNAPL

    Get PDF
    The application of the 222Radon (Rn) deficit technique using subsurface soil gas probes for the identification and quantification of light non-aqueous phase liquids (LNAPL) has provided positive outcomes in recent years. This study presents an alternative method for applying this technique in the headspace of groundwater monitoring wells. The developed protocol, designed for groundwater monitoring wells with a portion of their screen in the vadose zone, is based on the use of portable equipment that allows rapid measurement of the Rn soil gas activity in the vadose zone close to the water table (i.e., smear zone) where LNAPL is typically expected. The paper first describes the step-by-step procedure to be followed for the application of this method. Then, a preliminary assessment of the potential of the method was carried out at two Italian sites characterized by accidental gasoline and diesel spills into the subsurface from underground storage tanks. Although the number of tests conducted does not allow for definitive conclusions, the results obtained suggest that, from a qualitative point of view, Rn monitoring in the headspace of monitoring wells is a promising, fast, and minimally invasive screening method that could also potentially reduce the costs associated with field data acquisition. This method proves to be suitable for detecting the presence of LNAPL in both the mobile and residual phases with results consistent with the other lines of evidence available at the sites, such as groundwater and soil gas monitoring. Future efforts should be directed toward evaluating the accuracy of this method for a quantitative assessment of residual LNAPL saturations

    The Role of Nutrition in Primary and Secondary Prevention of Cardiovascular Damage in Childhood Cancer Survivors

    Get PDF
    Innovative therapeutic strategies in childhood cancer led to a significant reduction in cancer-related mortality. Cancer survivors are a growing fragile population, at risk of long-term side effects of cancer treatments, thus requiring customized clinical attention. Antineoplastic drugs have a wide toxicity profile that can limit their clinical usage and spoil patients' life, even years after the end of treatment. The cardiovascular system is a well-known target of antineoplastic treatments, including anthracyclines, chest radiotherapy and new molecules, such as tyrosine kinase inhibitors. We investigated nutritional changes in children with cancer from the diagnosis to the end of treatment and dietary habits in cancer survivors. At diagnosis, children with cancer may present variable degrees of malnutrition, potentially affecting drug tolerability and prognosis. During cancer treatment, the usage of corticosteroids can lead to rapid weight gain, exposing children to overweight and obesity. Moreover, dietary habits and lifestyle often dramatically change in cancer survivors, who acquire sedentary behavior and weak adherence to dietary guidelines. Furthermore, we speculated on the role of nutrition in the primary prevention of cardiac damage, investigating the potential cardioprotective role of diet-derived compounds with antioxidative properties. Finally, we summarized practical advice to improve the dietary habits of cancer survivors and their families

    Immune response against adenovirus in acute upper respiratory tract infections in immunocompetent children

    Get PDF
    During acute upper respiratory tract infections (AURTIs) caused by Adenoviruses, the mix of severe clinical presentation, together with elevation of white blood cells (WBCs) and C-reactive protein (CRP), often mimicking bacterial infection, leads to an inappropriate use of antibiotics. We studied 23 immunocompetent children admitted to our Pediatric Emergency Unit with signs of acute Adenoviral AURTIs, aiming at better clarifying the biological background sustaining this clinical presentation. Infection etiology was tested with nasopharyngeal swabs, serology, and DNA-PCR. During fever peaks and subsequent recovery, we assessed WBC count with differential, CRP, procalcitonin, serum concentration of six inflammatory cytokines, and lymphocyte subset populations. Results: IL-6 and IL-8 were found elevated in the acute phase, whereas a significant decrease during recovery was found for IL-6 and IL-10. We highlighted an increase of B lymphocytes in the acute phase; conversely, during recovery, an increase in T regulatory cells was noted. Monocytes and leukocytes were found markedly elevated during fever peaks compared to convalescence. All patients recovered uneventfully. The composition of lymphocyte population subsets and serum alterations are the main drivers of an overprescribed antibiotic. Examination of hospital admissions and performance is needed in further investigations to rule out bacterial infections or inflammatory syndromes
    • …
    corecore