1,202 research outputs found

    Measuring mental well-being in Sri Lanka : validation of the Warwick Edinburgh Mental Well-being Scale (WEMWBS) in a Sinhala speaking community

    Get PDF
    Background: Well-being is an important aspect of people’s lives and can be considered as an index of social progress. The Warwick Edinburgh Mental Well-being scale (WEMWBS) was developed to capture subjective mental well-being. It is a widely tested measure of mental well-being at the population level and has 14 items and a short-form with 7 items. This study was carried out to culturally validate and adapt the WEMWBS among a Sinhala speaking population in Sri Lanka. Methods: A forward and backward translation of the scale into Sinhala was done followed by a cognitive interview. The translated and culturally adapted scale and other mental health scales were administered to a sample of 294 persons between the ages of 17–73 using a paper-based version (n = 210) and an online survey (n = 84). Internal consistency reliability and test–retest reliability were tested. Construct validity, and convergent and discriminant validity were assessed using the total sample. Results: The translated questionnaire had good face and content validity. Internal consistency reliability was 0.91 and 0.84 for the 14-item and 7-item scales, respectively. Test–retest reliability over two weeks was satisfactory (Spearman r = 0.72 p < 0.001). Confirmatory factor analysis supported a one factor model. Convergent validity was assessed using WHO-5 well-being index (Spearman r = 0.67, p < 0.001), Patient Health Questionnaire (PHQ-9) (Spearman r = (-0.45), p < 0.001) and Kessler psychological distress scale (K10) (Spearman r = (-0.55), p < 0.001). Conclusions: The translated and culturally adapted Sinhala version of the WEMWBS has acceptable psychometric properties to assess mental well-being at the population level among the Sinhala speaking population in Sri Lanka

    First Measurement of Monoenergetic Muon Neutrino Charged Current Interactions

    Full text link
    We report the first measurement of monoenergetic muon neutrino charged current interactions. MiniBooNE has isolated 236 MeV muon neutrino events originating from charged kaon decay at rest (K+→μ+νμK^+ \rightarrow \mu^+ \nu_\mu) at the NuMI beamline absorber. These signal νμ\nu_\mu-carbon events are distinguished from primarily pion decay in flight νμ\nu_\mu and ν‾μ\overline{\nu}_\mu backgrounds produced at the target station and decay pipe using their arrival time and reconstructed muon energy. The significance of the signal observation is at the 3.9σ\sigma level. The muon kinetic energy, neutrino-nucleus energy transfer (ω=Eν−Eμ\omega=E_\nu-E_\mu), and total cross section for these events is extracted. This result is the first known-energy, weak-interaction-only probe of the nucleus to yield a measurement of ω\omega using neutrinos, a quantity thus far only accessible through electron scattering.Comment: 6 pages, 4 figure

    Determination of muon momentum in the MicroBooNE LArTPC using an improved model of multiple Coulomb scattering

    Full text link
    We discuss a technique for measuring a charged particle's momentum by means of multiple Coulomb scattering (MCS) in the MicroBooNE liquid argon time projection chamber (LArTPC). This method does not require the full particle ionization track to be contained inside of the detector volume as other track momentum reconstruction methods do (range-based momentum reconstruction and calorimetric momentum reconstruction). We motivate use of this technique, describe a tuning of the underlying phenomenological formula, quantify its performance on fully contained beam-neutrino-induced muon tracks both in simulation and in data, and quantify its performance on exiting muon tracks in simulation. Using simulation, we have shown that the standard Highland formula should be re-tuned specifically for scattering in liquid argon, which significantly improves the bias and resolution of the momentum measurement. With the tuned formula, we find agreement between data and simulation for contained tracks, with a small bias in the momentum reconstruction and with resolutions that vary as a function of track length, improving from about 10% for the shortest (one meter long) tracks to 5% for longer (several meter) tracks. For simulated exiting muons with at least one meter of track contained, we find a similarly small bias, and a resolution which is less than 15% for muons with momentum below 2 GeV/c. Above 2 GeV/c, results are given as a first estimate of the MCS momentum measurement capabilities of MicroBooNE for high momentum exiting tracks

    Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber

    Full text link
    We present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the potential of convolutional neural networks for particle identification or event detection on simulated neutrino interactions. We also address technical issues that arise when applying this technique to data from a large LArTPC at or near ground level

    The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector

    Get PDF
    The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens of algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.Comment: Preprint to be submitted to The European Physical Journal

    Design and construction of the MicroBooNE Cosmic Ray Tagger system

    Full text link
    The MicroBooNE detector utilizes a liquid argon time projection chamber (LArTPC) with an 85 t active mass to study neutrino interactions along the Booster Neutrino Beam (BNB) at Fermilab. With a deployment location near ground level, the detector records many cosmic muon tracks in each beam-related detector trigger that can be misidentified as signals of interest. To reduce these cosmogenic backgrounds, we have designed and constructed a TPC-external Cosmic Ray Tagger (CRT). This sub-system was developed by the Laboratory for High Energy Physics (LHEP), Albert Einstein center for fundamental physics, University of Bern. The system utilizes plastic scintillation modules to provide precise time and position information for TPC-traversing particles. Successful matching of TPC tracks and CRT data will allow us to reduce cosmogenic background and better characterize the light collection system and LArTPC data using cosmic muons. In this paper we describe the design and installation of the MicroBooNE CRT system and provide an overview of a series of tests done to verify the proper operation of the system and its components during installation, commissioning, and physics data-taking

    Measurement of cosmic-ray reconstruction efficiencies in the MicroBooNE LArTPC using a small external cosmic-ray counter

    Full text link
    The MicroBooNE detector is a liquid argon time projection chamber at Fermilab designed to study short-baseline neutrino oscillations and neutrino-argon interaction cross-section. Due to its location near the surface, a good understanding of cosmic muons as a source of backgrounds is of fundamental importance for the experiment. We present a method of using an external 0.5 m (L) x 0.5 m (W) muon counter stack, installed above the main detector, to determine the cosmic-ray reconstruction efficiency in MicroBooNE. Data are acquired with this external muon counter stack placed in three different positions, corresponding to cosmic rays intersecting different parts of the detector. The data reconstruction efficiency of tracks in the detector is found to be ϵdata=(97.1±0.1 (stat)±1.4 (sys))%\epsilon_{\mathrm{data}}=(97.1\pm0.1~(\mathrm{stat}) \pm 1.4~(\mathrm{sys}))\%, in good agreement with the Monte Carlo reconstruction efficiency ϵMC=(97.4±0.1)%\epsilon_{\mathrm{MC}} = (97.4\pm0.1)\%. This analysis represents a small-scale demonstration of the method that can be used with future data coming from a recently installed cosmic-ray tagger system, which will be able to tag ≈80%\approx80\% of the cosmic rays passing through the MicroBooNE detector.Comment: 19 pages, 12 figure
    • …
    corecore