13,154 research outputs found
Contributions to workload of rotational optical transformations
An investigation of visuomotor adaptation to optical rotation and optical inversion was conducted. Experiment 1 examined the visuomotor adaptability of subjects to an optically rotating visual world with a univariate repeated measures design. Experiment 1A tested one major prediction of a model of adaptation put forth by Welch who predicted that the aversive drive state that triggers adaptation would be habituated to fairly rapidly. Experiment 2 was conducted to investigate the role of motor activity in adaptation to optical rotation. Specifically, this experiment contrasted the reafference hypothesis and the proprioceptive change hypothesis. Experiment 3 examined the role of cognition, error-corrective feedback, and proprioceptive and/or reafferent feedback in visuomotor adaptation to optical inversion. Implications for research and implications for practice were suggested for all experiments
Radiometer requirements for Earth-observation systems using large space antennas
Requirements are defined for Earth observation microwave radiometry for the decade of the 1990's by using large space antenna (LSA) systems with apertures in the range from 50 to 200 m. General Earth observation needs, specific measurement requirements, orbit mission guidelines and constraints, and general radiometer requirements are defined. General Earth observation needs are derived from NASA's basic space science program. Specific measurands include soil moisture, sea surface temperature, salinity, water roughness, ice boundaries, and water pollutants. Measurements are required with spatial resolution from 10 to 1 km and with temporal resolution from 3 days to 1 day. The primary orbit altitude and inclination ranges are 450 to 2200 km and 60 to 98 deg, respectively. Contiguous large scale coverage of several land and ocean areas over the globe dictates large (several hundred kilometers) swaths. Radiometer measurements are made in the bandwidth range from 1 to 37 GHz, preferably with dual polarization radiometers with a minimum of 90 percent beam efficiency. Reflector surface, root mean square deviation tolerances are in the wavelength range from 1/30 to 1/100
Triple-Pomeron Matrix Model for Dispersive Corrections to Nucleon-Nucleus Total Cross Section
Dispersive corrections to the total cross section for high-energy scattering
from a heavy nucleus are calculated using a matrix model, based on the
triple-Pomeron behavior of diffractive scattering from a single nucleon, for
the cross section operator connecting different states of the projectile
nucleon . Energy-dependent effects due to the decrease in longitudinal momentum
transfers and the opening of more channels with increasing energy are included.
The three leading terms in an expansion in the number of inelastic transitions
are evaluated and compared to exact results for the model in the uniform
nuclear density approximation for the the scattering of nucleons from Pb^{208}
for laboratory momenta ranging from 50 to 200 GeV/c.Comment: 16 pages, 2 figures, RevTex
Active and passive microwave measurements in Hurricane Allen
The NASA Langley Research Center analysis of the airborne microwave remote sensing measurements of Hurricane Allen obtained on August 5 and 8, 1980 is summarized. The instruments were the C-band stepped frequency microwave radiometer and the Ku-band airborne microwave scatterometer. They were carried aboard a NOAA aircraft making storm penetrations at an altitude of 3000 m and are sensitive to rain rate, surface wind speed, and surface wind vector. The wind speed is calculated from the increase in antenna brightness temperature above the estimated calm sea value. The rain rate is obtained from the difference between antenna temperature increases measured at two frequencies, and wind vector is determined from the sea surface normalized radar cross section measured at several azimuths. Comparison wind data were provided from the inertial navigation systems aboard both the C-130 aircraft at 3000 m and a second NOAA aircraft (a P-3) operating between 500 and 1500 m. Comparison rain rate data were obtained with a rain radar aboard the P-3. Evaluation of the surface winds obtained with the two microwave instruments was limited to comparisons with each other and with the flight level winds. Two important conclusions are drawn from these comparisons: (1) the radiometer is accurate when predicting flight level wind speeds and rain; and (2) the scatterometer produces well behaved and consistent wind vectors for the rain free periods
The new HiVIS spectropolarimeter and spectropolarimetric calibration of the AEOS telescope
We designed, built, and calibrated a new spectropolarimeter for the HiVIS
spectrograph (R 12000-49000) on the AEOS telescope. We also did a polarization
calibration of the telescope and instrument. We will introduce the design and
use of the spectropolarimeter as well as a new data reduction package we have
developed, then discuss the polarization calibration of the spectropolarimeter
and the AEOS telescope. We used observations of unpolarized standard stars at
many pointings to measure the telescope induced polarization and compare it
with a Zemax model. The telescope induces polarization of 1-6% with a strong
variation with wavelength and pointing, consistent with the altitude and
azimuth variation expected. We then used scattered sunlight as a linearly
polarized source to measure the telescopes spectropolarimetric response to
linearly polarized light. We then made an all-sky map of the telescope's
polarization response to calibrate future spectropolarimetry.Comment: PASP 118, June 200
Towards a systematic design of isotropic bulk magnetic metamaterials using the cubic point groups of symmetry
In this paper a systematic approach to the design of bulk isotropic magnetic
metamaterials is presented. The role of the symmetries of both the constitutive
element and the lattice are analyzed. For this purpose it is assumed that the
metamaterial is composed by cubic SRR resonators, arranged in a cubic lattice.
The minimum symmetries needed to ensure an isotropic behavior are analyzed, and
some particular configurations are proposed. Besides, an equivalent circuit
model is proposed for the considered cubic SRR resonators. Experiments are
carried out in order to validate the proposed theory. We hope that this
analysis will pave the way to the design of bulk metamaterials with strong
isotropic magnetic response, including negative permeability and left-handed
metamaterials.Comment: Submitted to Physical Review B, 23 page
Scattering of Dirac particles from non-local separable potentials: the eigenchannel approach
An application of the new formulation of the eigenchannel method [R.
Szmytkowski, Ann. Phys. (N.Y.) {\bf 311}, 503 (2004)] to quantum scattering of
Dirac particles from non-local separable potentials is presented. Eigenchannel
vectors, related directly to eigenchannels, are defined as eigenvectors of a
certain weighted eigenvalue problem. Moreover, negative cotangents of
eigenphase-shifts are introduced as eigenvalues of that spectral problem.
Eigenchannel spinor as well as bispinor harmonics are expressed throughout the
eigenchannel vectors. Finally, the expressions for the bispinor as well as
matrix scattering amplitudes and total cross section are derived in terms of
eigenchannels and eigenphase-shifts. An illustrative example is also provided.Comment: Revtex, 9 pages, 4 figures, published versio
Infrared Observations During the Secondary Eclipse of HD 209458b: I. 3.6-Micron Occultation Spectroscopy Using the VLT
We search for an infrared signature of the transiting extrasolar planet HD
209458b during secondary eclipse. Our method, which we call `occultation
spectroscopy,' searches for the disappearance and reappearance of weak spectral
features due to the exoplanet as it passes behind the star and later reappears.
We argue that at the longest infrared wavelengths, this technique becomes
preferable to conventional `transit spectroscopy'. We observed the system in
the wing of the strong nu-3 band of methane near 3.6 microns during two
secondary eclipses, using the VLT/ISAAC spectrometer at a spectral resolution
of 3300. Our analysis, which utilizes a model template spectrum, achieves
sufficient precision to expect detection of the spectral structure predicted by
an irradiated, low-opacity (cloudless), low-albedo, thermochemical equilibrium
model for the exoplanet atmosphere. However, our observations show no evidence
for the presence of this spectrum from the exoplanet, with the statistical
significance of the non-detection depending on the timing of the secondary
eclipse, which depends on the assumed value for the orbital eccentricity. Our
results reject certain specific models of the atmosphere of HD 209458b as
inconsistent with our observations at the 3-sigma level, given assumptions
about the stellar and planetary parameters.Comment: 26 pages, 8 figures Accepted to Astrophysical Journa
Hadron-nucleon Total Cross Section Fluctuations from Hadron-nucleus Total Cross Sections
The extent to which information about fluctuations in hadron-nucleon total
cross sections in the frozen approximation can be extracted from very high
energy hadron-nucleus total cross section measurements for a range of heavy
nuclei is discussed. The corrections to the predictions of Glauber theory due
to these fluctuations are calculated for several models for the distribution
functions, and differences of the order of 50 mb are found for heavy nuclei.
The generating function for the moments of the hadron-nucleon cross section
distributions can be approximately determined from the derivatives of the
hadron-nucleus total cross sections with respect to the nuclear geometric cross
section. The argument of the generating function, however, it limited to the
maximum value of a dimensionless thickness function obtained at zero impact
parameter for the heaviest nuclear targets: about 1.8 for pions and 3.0 for
nucleons.Comment: 14 pages, revtex 3.0, 4 figures available upon reques
- …