1,258 research outputs found
Phase synchronization from noisy univariate signals
We present methods for detecting phase synchronization of two
unidirectionally coupled, self-sustained noisy oscillators from a signal of the
driven oscillator alone. One method detects soft, another hard phase locking.
Both are applied to the problem of detecting phase synchronization in von
Karman vortex flow meters.Comment: 4 pages, 4 figure
The difference-based equivalent static load method: an improvement of the ESL method’s nonlinear approximation quality
Nonlinear dynamic structural optimization is a real challenge, in particular for problems that require the use of explicit solvers, e.g., crash. Here, the number of design variables is typically very limited. A way to overcome this drawback is to use linear auxiliary load cases which are derived from nonlinear dynamic analysis results in order to enable the application of linear static response optimization. The equivalent static load method (ESLM) provides a well-defined procedure to create such linear auxiliary load cases. The main idea here is that after the selection of a number of representative time steps, a set of equivalent static loads (ESLs) is computed for each time step such that the resulting displacement field in the linear static analysis is identical to the respective field in the nonlinear dynamic analysis. Each set of ESLs defines an auxiliary load case, which is used in the linear static response optimization. The crucial point is that the finite element (FE)-model for each auxiliary load case describes the undeformed initial geometry. This can lead to insufficient approximation quality in the linear static system for highly nonlinear problems. To overcome this drawback, a difference-based extension of the ESL method called DiESL has been developed for nonlinear dynamic response optimization problems. Here, the FE-model for each auxiliary load case describes the deformed nonlinear geometry at the respective time, and the corresponding ESLs create only the displacement field leading to the deformed state of the subsequent ESL time step. Consequently, responses in each linear auxiliary load case (corresponding to a time step) are computed as the accumulated sum of the previous linear auxiliary load cases. Furthermore, the linear static response optimization problem consists not only of one but of nT FE-models where nT is the number of selected time steps. Such a multi-model optimization (MMO) can be solved with commercial FE solvers. It turns out that the DiESL approach leads to a significant improvement of the nonlinear approximation quality and faster convergence to the optimum when compared to standard ESLM. This will be demonstrated and discussed based on selected test examples
Better Nonlinear Models from Noisy Data: Attractors with Maximum Likelihood
A new approach to nonlinear modelling is presented which, by incorporating
the global behaviour of the model, lifts shortcomings of both least squares and
total least squares parameter estimates. Although ubiquitous in practice, a
least squares approach is fundamentally flawed in that it assumes independent,
normally distributed (IND) forecast errors: nonlinear models will not yield IND
errors even if the noise is IND. A new cost function is obtained via the
maximum likelihood principle; superior results are illustrated both for small
data sets and infinitely long data streams.Comment: RevTex, 11 pages, 4 figure
X-ray Fluctuation Power Spectral Densities of Seyfert 1 Galaxies
By combining complementary monitoring observations spanning long, medium and
short time scales, we have constructed power spectral densities (PSDs) of six
Seyfert~1 galaxies. These PSDs span 4 orders of magnitude in temporal
frequency, sampling variations on time scales ranging from tens of minutes to
over a year. In at least four cases, the PSD shows a "break," a significant
departure from a power law, typically on time scales of order a few days. This
is similar to the behavior of Galactic X-ray binaries (XRBs), lower mass
compact systems with breaks on time scales of seconds. NGC 3783 shows tentative
evidence for a doubly-broken power law, a feature that until now has only been
seen in the (much better-defined) PSDs of low-state XRBs. It is also
interesting that (when one previously-observed object is added to make a small
sample of seven), an apparently significant correlation is seen between the
break time scale and the putative black hole mass , while none
is seen between break time scale and luminosity. The data are consistent with
the linear relation T = M_{\rm BH}/10^{6.5} \Msun; extrapolation over 6--7
orders of magnitude is in reasonable agreement with XRBs. All of this
strengthens the case for a physical similarity between Seyfert~1s and XRBs.Comment: 27 pages, 13 figures. Accepted for publication in ApJ. Typo correcte
A near-IR variability study of the Galactic black hole: a red noise source with no detected periodicity
We present the results of near-infrared (2 and 3 microns) monitoring of Sgr
A*-IR with 1 min time sampling using the natural and laser guide star adaptive
optics (LGS AO) system at the Keck II telescope. Sgr A*-IR was observed
continuously for up to three hours on each of seven nights, between 2005 July
and 2007 August. Sgr A*-IR is detected at all times and is continuously
variable, with a median observed 2 micron flux density of 0.192 mJy,
corresponding to 16.3 magnitude at K'. These observations allow us to
investigate Nyquist sampled periods ranging from about 2 minutes to an hour.
Using Monte Carlo simulations, we find that the variability of Sgr A* in this
data set is consistent with models based on correlated noise with power spectra
having frequency dependent power law slopes between 2.0 to 3.0, consistent with
those reported for AGN light curves. Of particular interest are periods of ~20
min, corresponding to a quasi-periodic signal claimed based upon previous
near-infrared observations and interpreted as the orbit of a 'hot spot' at or
near the last stable orbit of a spinning black hole. We find no significant
periodicity at any time scale probed in these new observations for periodic
signals. This study is sensitive to periodic signals with amplitudes greater
than 20% of the maximum amplitude of the underlying red noise component for
light curves with duration greater than ~2 hours at a 98% confidence limit.Comment: 37 pages, 2 tables, 17 figures, accepted by Ap
Explicit Model Checking of Very Large MDP using Partitioning and Secondary Storage
The applicability of model checking is hindered by the state space explosion
problem in combination with limited amounts of main memory. To extend its
reach, the large available capacities of secondary storage such as hard disks
can be exploited. Due to the specific performance characteristics of secondary
storage technologies, specialised algorithms are required. In this paper, we
present a technique to use secondary storage for probabilistic model checking
of Markov decision processes. It combines state space exploration based on
partitioning with a block-iterative variant of value iteration over the same
partitions for the analysis of probabilistic reachability and expected-reward
properties. A sparse matrix-like representation is used to store partitions on
secondary storage in a compact format. All file accesses are sequential, and
compression can be used without affecting runtime. The technique has been
implemented within the Modest Toolset. We evaluate its performance on several
benchmark models of up to 3.5 billion states. In the analysis of time-bounded
properties on real-time models, our method neutralises the state space
explosion induced by the time bound in its entirety.Comment: The final publication is available at Springer via
http://dx.doi.org/10.1007/978-3-319-24953-7_1
Comparative Compositions of Grain of Bread Wheat, Emmer and Spelt Grown with Different Levels of Nitrogen Fertilisation
Five cultivars of bread wheat and spelt and three of emmer were grown in replicate randomised field trials on two sites for two years with 100 and 200 kg nitrogen fertiliser per hectare, reflecting low input and intensive farming systems. Wholemeal flours were analysed for components that are suggested to contribute to a healthy diet. The ranges of all components overlapped between the three cereal types, reflecting the effects of both genotype and environment. Nevertheless, statistically significant differences in the contents of some components were observed. Notably, emmer and spelt had higher contents of protein, iron, zinc, magnesium, choline and glycine betaine, but also of asparagine (the precursor of acrylamide) and raffinose. By contrast, bread wheat had higher contents of the two major types of fibre, arabinoxylan (AX) and _-glucan, than emmer and a higher AX content than spelt. Although such differences in composition may be suggested to result in effects on metabolic parameters and health when studied in isolation, the final effects will depend on the quantity consumed and the composition of the overall diet
An Extreme Ultraviolet Explorer Atlas of Seyfert Galaxy Light Curves: Search for Periodicity
The Deep Survey instrument on the Extreme Ultraviolet Explorer satellite
(EUVE) obtained long, nearly continuous soft X-ray light curves of 5-33 days
duration for 14 Seyfert galaxies and QSOs. We present a uniform reduction of
these data, which account for a total of 231 days of observation. Several of
these light curves are well suited to a search for periodicity or QPOs in the
range of hours to days that might be expected from dynamical processes in the
inner accretion disk around ~10^8 M_sun black holes. Light curves and
periodograms of the three longest observations show features that could be
transient periods: 0.89 days in RX J0437.4-4711, 2.08 days in Ton S180, and 5.8
days in 1H 0419-577. The statistical significance of these signals is estimated
using the method of Timmer & Konig (1995), which carefully takes into account
the red-noise properties of Seyfert light curves. The result is that the
signals in RX J0437.4-4711 and Ton S180 exceed 95% confidence with respect to
red noise, while 1H 0419-577 is only 64% significant. These period values
appear unrelated to the length of the observation, which is similar in the
three cases, but they do scale roughly as the luminosity of the object, which
would be expected in a dynamical scenario if luminosity scales with black hole
mass.Comment: 26 pages, 9 figures, accepted by Ap
Critical temperature of non-interacting Bose gases on disordered lattices
For a non-interacting Bose gas on a lattice we compute the shift of the
critical temperature for condensation when random-bond and onsite disorder are
present. We evidence that the shift depends on the space dimensionality D and
the filling fraction f. For D -> infinity (infinite-range model), using results
from the theory of random matrices, we show that the shift of the critical
temperature is negative, depends on f, and vanishes only for large f. The
connections with analogous results obtained for the spherical model are
discussed. For D=3 we find that, for large f, the critical temperature Tc is
enhanced by disorder and that the relative shift does not sensibly depend on f;
at variance, for small f, Tc decreases in agreement with the results obtained
for a Bose gas in the continuum. We also provide numerical estimates for the
shift of the critical temperature due to disorder induced on a non-interacting
Bose gas by a bichromatic incommensurate potential.Comment: 18 pages, 8 figures; Fig. 8 improved adding results for another value
of q (q=830/1076
- …