24 research outputs found

    The role of hemorrhage following spinal-cord injury.

    No full text
    Spinal-cord injury is characterized by primary damage as a direct consequence of mechanical insult, and secondary damage that is partly due to the acute inflammatory response. The extent of any hemorrhage within the injured cord is also known to be associated with the formation of intraparenchymal cavities and has been anecdotally linked to secondary damage. This study was designed to examine the contribution of blood components to the outcome of spinal-cord injury. We stereotaxically microinjected collagenase, which causes localized bleeding, into the spinal cord to model the hemorrhage associated with spinal cord injury in the absence of significant mechanical trauma. Tissue damage was observed at the collagenase injection site over time, and was associated with localized disruption of the blood-spinal-cord barrier, neuronal cell death, and the recruitment of leukocytes. The magnitude of the bleed was related to neutrophil mobilization. Interestingly, the collagenase-induced injury also provoked extended axonal damage. With this model, the down-stream effects of hemorrhage are easily discernible, and the impact of treatment strategies for spinal-cord injury on hemorrhage-related injury can be evaluated

    The role of hemorrhage following spinal-cord injury

    No full text
    Spinal-cord injury is characterized by primary damage as a direct consequence of mechanical insult, and secondary damage that is partly due to the acute inflammatory response. The extent of any hemorrhage within the injured cord is also known to be associated with the formation of intraparenchymal cavities and has been anecdotally linked to secondary damage. This study was designed to examine the contribution of blood components to the outcome of spinal-cord injury. We stereotaxically microinjected collagenase, which causes localized bleeding, into the spinal cord to model the hemorrhage associated with spinal cord injury in the absence of significant mechanical trauma. Tissue damage was observed at the collagenase injection site over time, and was associated with localized disruption of the blood-spinal-cord barrier, neuronal cell death, and the recruitment of leukocytes. The magnitude of the bleed was related to neutrophil mobilization. Interestingly, the collagenase-induced injury also provoked extended axonal damage. With this model, the down-stream effects of hemorrhage are easily discernible, and the impact of treatment strategies for spinal-cord injury on hemorrhage-related injury can be evaluated. © 2014 Elsevier Inc. All rights reserved

    Subsurface Broadband Acoustic Microscopy of Solids using Aperture Lenses

    No full text
    The imaging of interior planes in a solid object involves difficulties with spherical aberration, with the elimination of the front surface echo, and with the need in some cases to use signal processing techniques in order to enhance the signal-to-noise ratio. This paper shows that suitably designed spherical lenses can be used to minimize the spherical aberration. The elimination of the front surface echo requires careful time-gating and very short, broadband pulses. It is shown by using extended chirp pulses, the signal-to-noise ratio for subsurface objects can be very greatly improved. A number of examples of the use of these techniques for NDE are presented.</p

    Transmitting Transducer and the Sound Generation Process

    No full text

    Introduction

    No full text
    corecore