548 research outputs found

    On the extra phase correction to the semiclassical spin coherent-state propagator

    Get PDF
    The problem of an origin of the Solary-Kochetov extra-phase contribution to the naive semiclassical form of a generalized phase-space propagator is addressed with the special reference to the su(2) spin case which is the most important in applications. While the extra-phase correction to a flat phase-space propagator can straightforwardly be shown to appear as a difference between the principal and the Weyl symbols of a Hamiltonian in the next-to-leading order expansion in the semiclassical parameter, the same statement for the semiclassical spin coherent-state propagator holds provided the Holstein-Primakoff representation of the su(2) algebra generators is employed.Comment: 19 pages, no figures; a more general treatment is presented, some references are added, title is slightly changed; submitted to JM

    Electronic properties of disclinated flexible membrane beyond the inextensional limit: Application to graphene

    Full text link
    Gauge-theory approach to describe Dirac fermions on a disclinated flexible membrane beyond the inextensional limit is formulated. The elastic membrane is considered as an embedding of 2D surface into R^3. The disclination is incorporated through an SO(2) gauge vortex located at the origin, which results in a metric with a conical singularity. A smoothing of the conical singularity is accounted for by replacing a disclinated rigid plane membrane with a hyperboloid of near-zero curvature pierced at the tip by the SO(2) vortex. The embedding parameters are chosen to match the solution to the von Karman equations. A homogeneous part of that solution is shown to stabilize the theory. The modification of the Landau states and density of electronic states of the graphene membrane due to elasticity is discussed.Comment: 15 pages, Journal of Physics:Condensed Matter in pres

    On representation of the t-J model via spin-charge variables

    Full text link
    We show that the t-J Hamiltonian is not in general reduced to H(S,f), where S and f stand for independent ([S,f]=0) SU(2) (spin) generators and spinless fermionic (hole) field, respectively. The proof is based upon an identification of the Hubbard operators with the generators of the su(2|1) superalgebra in the degenerate fundamental representation and ensuing SU(2|1) path integral representation of the partition function.Comment: 15 pages, latex, no figure

    Classical and quantum dynamics of a spin-1/2

    Get PDF
    We reply to a comment on `Semiclassical dynamics of a spin-1/2 in an arbitrary magnetic field'.Comment: 4 pages, submitted to Journal of Physics

    Two-oscillator model of trapped-modes interaction in a nonlinear bilayer fish-scale metamaterial

    Full text link
    We discuss the similarity between the nature of resonant oscillations in two nonlinear systems, namely, a chain of coupled Duffing oscillators and a bilayer fish-scale metamaterial. In such systems two different resonant states arise which differ in their spectral lines. The spectral line of the first resonant state has a Lorentzian form, while the second one has a Fano form. This difference leads to a specific nonlinear response of the systems which manifests itself in appearance of closed loops in spectral lines and bending and overlapping of resonant curves. Conditions of achieving bistability and multistability are found out.Comment: 14 pages, 6 figure

    Electronic Structure of Disclinated Graphene in an Uniform Magnetic Field

    Full text link
    The electronic structure in the vicinity of the 1-heptagonal and 1-pentagonal defects in the carbon graphene plane is investigated. Using a continuum gauge field-theory model the local density of states around the Fermi energy is calculated for both cases. In this model, the disclination is represented by an SO(2) gauge vortex and corresponding metric follows from the elasticity properties of the graphene membrane. To enhance the interval of energies, a self-consistent perturbation scheme is used. The Landau states are investigated and compared with the predicted values.Comment: keywords: graphene, heptagonal defect, elasticity, carbon nanohorns, 13 page
    corecore