2,905 research outputs found
Information-Based Physics: An Observer-Centric Foundation
It is generally believed that physical laws, reflecting an inherent order in
the universe, are ordained by nature. However, in modern physics the observer
plays a central role raising questions about how an observer-centric physics
can result in laws apparently worthy of a universal nature-centric physics.
Over the last decade, we have found that the consistent apt quantification of
algebraic and order-theoretic structures results in calculi that possess
constraint equations taking the form of what are often considered to be
physical laws. I review recent derivations of the formal relations among
relevant variables central to special relativity, probability theory and
quantum mechanics in this context by considering a problem where two observers
form consistent descriptions of and make optimal inferences about a free
particle that simply influences them. I show that this approach to describing
such a particle based only on available information leads to the mathematics of
relativistic quantum mechanics as well as a description of a free particle that
reproduces many of the basic properties of a fermion. The result is an approach
to foundational physics where laws derive from both consistent descriptions and
optimal information-based inferences made by embedded observers.Comment: To be published in Contemporary Physics. The manuscript consists of
43 pages and 9 Figure
Random and exhaustive generation of permutations and cycles
In 1986 S. Sattolo introduced a simple algorithm for uniform random
generation of cyclic permutations on a fixed number of symbols. This algorithm
is very similar to the standard method for generating a random permutation, but
is less well known.
We consider both methods in a unified way, and discuss their relation with
exhaustive generation methods. We analyse several random variables associated
with the algorithms and find their grand probability generating functions,
which gives easy access to moments and limit laws.Comment: 9 page
Obtaining the Quantum Fourier Transform from the Classical FFT with QR Decomposition
We present the detailed process of converting the classical Fourier Transform
algorithm into the quantum one by using QR decomposition. This provides an
example of a technique for building quantum algorithms using classical ones.
The Quantum Fourier Transform is one of the most important quantum subroutines
known at present, used in most algorithms that have exponential speed up
compared to the classical ones. We briefly review Fast Fourier Transform and
then make explicit all the steps that led to the quantum formulation of the
algorithm, generalizing Coppersmith's work.Comment: 12 pages, 1 figure (generated within LaTeX). To appear in Journal of
Computational and Applied Mathematic
Dictionary matching in a stream
We consider the problem of dictionary matching in a stream. Given a set of
strings, known as a dictionary, and a stream of characters arriving one at a
time, the task is to report each time some string in our dictionary occurs in
the stream. We present a randomised algorithm which takes O(log log(k + m))
time per arriving character and uses O(k log m) words of space, where k is the
number of strings in the dictionary and m is the length of the longest string
in the dictionary
Revealing Relationships among Relevant Climate Variables with Information Theory
A primary objective of the NASA Earth-Sun Exploration Technology Office is to
understand the observed Earth climate variability, thus enabling the
determination and prediction of the climate's response to both natural and
human-induced forcing. We are currently developing a suite of computational
tools that will allow researchers to calculate, from data, a variety of
information-theoretic quantities such as mutual information, which can be used
to identify relationships among climate variables, and transfer entropy, which
indicates the possibility of causal interactions. Our tools estimate these
quantities along with their associated error bars, the latter of which is
critical for describing the degree of uncertainty in the estimates. This work
is based upon optimal binning techniques that we have developed for
piecewise-constant, histogram-style models of the underlying density functions.
Two useful side benefits have already been discovered. The first allows a
researcher to determine whether there exist sufficient data to estimate the
underlying probability density. The second permits one to determine an
acceptable degree of round-off when compressing data for efficient transfer and
storage. We also demonstrate how mutual information and transfer entropy can be
applied so as to allow researchers not only to identify relations among climate
variables, but also to characterize and quantify their possible causal
interactions.Comment: 14 pages, 5 figures, Proceedings of the Earth-Sun System Technology
Conference (ESTC 2005), Adelphi, M
Origin of Complex Quantum Amplitudes and Feynman's Rules
Complex numbers are an intrinsic part of the mathematical formalism of
quantum theory, and are perhaps its most mysterious feature. In this paper, we
show that the complex nature of the quantum formalism can be derived directly
from the assumption that a pair of real numbers is associated with each
sequence of measurement outcomes, with the probability of this sequence being a
real-valued function of this number pair. By making use of elementary symmetry
conditions, and without assuming that these real number pairs have any other
algebraic structure, we show that these pairs must be manipulated according to
the rules of complex arithmetic. We demonstrate that these complex numbers
combine according to Feynman's sum and product rules, with the modulus-squared
yielding the probability of a sequence of outcomes.Comment: v2: Clarifications, and minor corrections and modifications. Results
unchanged. v3: Minor changes to introduction and conclusio
Gossip on Weighted Networks
We investigate how suitable a weighted network is for gossip spreading. The
proposed model is based on the gossip spreading model introduced by Lind et.al.
on unweighted networks. Weight represents "friendship." Potential spreader
prefers not to spread if the victim of gossip is a "close friend". Gossip
spreading is related to the triangles and cascades of triangles. It gives more
insight about the structure of a network.
We analyze gossip spreading on real weighted networks of human interactions.
6 co-occurrence and 7 social pattern networks are investigated. Gossip
propagation is found to be a good parameter to distinguish co-occurrence and
social pattern networks. As a comparison some miscellaneous networks and
computer generated networks based on ER, BA, WS models are also investigated.
They are found to be quite different than the human interaction networks.Comment: 8 pages, 4 figures, 1 tabl
Subventricular zone stem cells are heterogeneous with respect to their embryonic origins and neurogenic fates in the adult olfactory bulb
Wedetermined the embryonic origins of adult forebrain subventricular zone (SVZ) stem cells by Cre-lox fate mapping in transgenic mice. We found that all parts of the telencephalic neuroepithelium, including the medial ganglionic eminence and lateral ganglionic eminence (LGE) and the cerebral cortex, contribute multipotent, self-renewing stem cells to the adult SVZ. Descendants of the embryonic LGE and cortex settle in ventral and dorsal aspects of the dorsolateral SVZ, respectively. Both populations contribute new (5-bromo-2(')-deoxyuridine- labeled) tyrosine hydroxylase- and calretinin-positive interneurons to the adult olfactory bulb. However, calbindin-positive interneurons in the olfactory glomeruli were generated exclusively by LGE- derived stem cells. Thus, different SVZ stem cells have different embryonic origins, colonize different parts of the SVZ, and generate different neuronal progeny, suggesting that some aspects of embryonic patterning are preserved in the adult SVZ. This could have important implications for the design of endogenous stem cell-based therapies in the future
- …