971 research outputs found

    Time-Averaged Adiabatic Potentials: Versatile traps and waveguides for ultracold quantum gases

    Full text link
    We demonstrate a novel class of trapping potentials, time-averaged adiabatic potentials (TAAP) which allows the generation of a large variety of traps and waveguides for ultracold atoms. Multiple traps can be coupled through controllable tunneling barriers or merged altogether. We present analytical expressions for pancake-, cigar-, and ring- shaped traps. The ring-geometry is of particular interest for guided matter-wave interferometry as it provides a perfectly smooth waveguide of controllable diameter, and thus a tunable sensitivity of the interferometer.Comment: 5 pages, 3 figure

    Transconductance fluctuations as a probe for interaction induced quantum Hall states in graphene

    Full text link
    Transport measurements normally provide a macroscopic, averaged view of the sample, so that disorder prevents the observation of fragile interaction induced states. Here, we demonstrate that transconductance fluctuations in a graphene field effect transistor reflect charge localization phenomena on the nanometer scale due to the formation of a dot network which forms near incompressible quantum states. These fluctuations give access to fragile broken-symmetry and fractional quantum Hall states even though these states remain hidden in conventional magnetotransport quantities.Comment: 6 pages, 3 figure

    Radiation induced zero-resistance states in GaAs/AlGaAs heterostructures: Voltage-current characteristics and intensity dependence at the resistance minima

    Full text link
    High mobility two-dimensional electron systems exhibit vanishing resistance over broad magnetic field intervals upon excitation with microwaves, with a characteristic reduction of the resistance with increasing radiation intensity at the resistance minima. Here, we report experimental results examining the voltage - current characteristics, and the resistance at the minima vs. the microwave power. The findings indicate that a non-linear V-I curve in the absence of microwave excitation becomes linearized under irradiation, unlike expectations, and they suggest a similarity between the roles of the radiation intensity and the inverse temperature.Comment: 3 color figures; publishe

    Equilibrium Current and Orbital Magnetization in a Quantum Hall Fluid

    Full text link
    We present a general theory for the equilibrium current distribution in an interacting two-dimensional electron gas subjected to a perpendicular magnetic field, and confined by a potential that varies slowly on the scale of the magnetic length. The distribution is found to consist of strips or channels of current, which alternate in direction, and which have universal integrated strength.Comment: 13 pages, Revtex, to appear in the proceedings of the "Workshop on Novel Physics in Low-Dimensional Electron Systems" held in Madra

    Composite fermions in periodic and random antidot lattices

    Get PDF
    The longitudinal and Hall magnetoresistance of random and periodic arrays of artificial scatterers, imposed on a high-mobility two-dimensional electron gas, were investigated in the vicinity of Landau level filling factor ν=1/2. In periodic arrays, commensurability effects between the period of the antidot array and the cyclotron radius of composite fermions are observed. In addition, the Hall resistance shows a deviation from the anticipated linear dependence, reminiscent of quenching around zero magnetic field. Both effects are absent for random antidot lattices. The relative amplitude of the geometric resonances for opposite signs of the effective magnetic field and its dependence on illumination illustrate enhanced soft wall effects for composite fermions

    Demonstration of a 1/4 cycle phase shift in the radiation-induced oscillatory-magnetoresistance in GaAs/AlGaAs devices

    Get PDF
    We examine the phase and the period of the radiation-induced oscillatory-magnetoresistance in GaAs/AlGaAs devices utilizing in-situ magnetic field calibration by Electron Spin Resonance of DiPhenyl-Picryl-Hydrazal. The results confirm a ff-independent 1/4 cycle phase shift with respect to the hf=jωchf = j\hbar\omega_{c} condition for j1j \geq 1, and they also suggest a small (\approx 2%) reduction in the effective mass ratio, m/mm^{*}/m, with respect to the standard value for GaAs/AlGaAs devices.Comment: 4 pages, 4 color figure

    Frictional Drag Between Coupled 2D Hole Gases in GaAs/AlGaAs Heterostructures

    Full text link
    We report on the first measurements of the drag effect between coupled 2D-hole gases. We investigate the coupling by changing the carrier densities in the quantum wells, the widths of the barriers between the gases and the perpendicular magnetic field. From the data we are able to attribute the frictional drag to phonon coupling, because the non-parabolicity allows to tune the Fermi wavevector and the Fermi velocity separately and, thereby, to distinguish between phonon- and plasmon-dominated coupling.Comment: 10 pages, 5 figure

    Activated Transport in the individual Layers that form the νT\nu_T=1 Exciton Condensate

    Full text link
    We observe the total filling factor νT\nu_{T}=1 quantum Hall state in a bilayer two-dimensional electron system with virtually no tunnelling. We find thermally activated transport in the balanced system with a monotonic increase of the activation energy with decreasing d/Bd/\ell_B below 1.65. In the imbalanced system we find activated transport in each of the layers separately, yet the activation energies show a striking asymmetry around the balance point. This implies that the gap to charge-excitations in the {\em individual} layers is substantially different for positive and negative imbalance.Comment: 4 pages. 4 figure

    Exciton condensate at a total filling factor of 1 in Corbino 2D electron bilayers

    Full text link
    Magneto-transport and drag measurements on a quasi-Corbino 2D electron bilayer at the systems total filling factor 1 (v_tot=1) reveal a drag voltage that is equal in magnitude to the drive voltage as soon as the two layers begin to form the expected v_tot=1 exciton condensate. The identity of both voltages remains present even at elevated temperatures of 0.25 K. The conductance in the current carrying layer vanishes only in the limit of strong coupling between the two layers and at T->0 K which suggests the presence of an excitonic circular current

    Periodic Structures with Rashba Interaction in Magnetic Field

    Full text link
    We analyze the behaviour of a system of particles living on a periodic crystal in the presence of a magnetic field B. This can be done by involving a periodic potential U(x) and the Rashba interaction of coupling constant k_{so}. By resorting the corresponding spectrum, we explicitly determine the band structures and the Bloch spinors. These allow us to discuss the system symmetries in terms of the polarizations where they are shown to be broken. The dynamical spin will be studied by calculating different quantities. In the limits: k_{so} and U(x)=0, we analyze again the system by deriving different results. Considering the strong BB case, we obtain an interesting result that is the conservation of the polarizations. Analyzing the critical point \lambda_{k,\sigma}=\pm\sq{1\over 2}, we show that the Hilbert space associated to the spectrum in z-direction has a zero mode energy similar to that of massless Dirac fermions in graphene. Finally, we give the resulting energy spectrum when B=0 and U(x) is arbitrary.Comment: 24 pages, references added, misprints corrected. Version to appear in JP
    corecore