2,433 research outputs found

    The ELM Survey. I. A Complete Sample of Extremely Low Mass White Dwarfs

    Full text link
    We analyze radial velocity observations of the 12 extremely low-mass <0.25 Msol white dwarfs (WDs) in the MMT Hypervelocity Star Survey. Eleven of the 12 WDs are binaries with orbital periods shorter than 14 hours; the one non-variable WD is possibly a pole-on system among our non-kinematically selected targets. Our sample is unique: it is complete in a well-defined range of apparent magnitude and color. The orbital mass functions imply that the unseen companions are most likely other WDs, although neutron star companions cannot be excluded. Six of the 11 systems with orbital solutions will merge within a Hubble time due to the loss of angular momentum through gravitational wave radiation. The quickest merger is J0923+3028, a g=15.7 ELM WD binary with a 1.08 hr orbital period and a <130 Myr merger time. The chance of a supernova Ia event among our ELM WDs is only 1%-7%, however. Three binary systems (J0755+4906, J1233+1602, and J2119-0018) have extreme mass ratios and will most likely form stable mass-transfer AM CVn systems. Two of these objects, SDSS J1233+1602 and J2119-0018, are the lowest surface gravity WDs ever found; both show Ca II absorption likely from accretion of circumbinary material. We predict that at least one of our WDs is an eclipsing detached double WD system, important for constraining helium core WD models.Comment: ApJ, in pres

    Direct Distance Measurement to the Dusty White Dwarf GD 362

    Get PDF
    We present trigonometric parallax observations of GD 362 obtained over seven epochs using the MDM 2.4m Hiltner Telescope. The existence of a dust disk around this possibly massive white dwarf makes it an interesting target for parallax observations. The measured parallax for GD 362 places it at a distance of 50.6 pc, which implies that its radius and mass are ~ 0.0106 Rsun and 0.71 Msun, respectively. GD 362 is not as massive as initially thought (1.2Msun). Our results are entirely consistent with the distance and mass estimates (52.2 pc and 0.73 Msun) by Zuckerman et al., who demonstrated that GD 362 has a helium dominated atmosphere. Dropping GD 362 from the list of massive white dwarfs, there are no white dwarfs with M > 0.9 Msun that are known to host circumstellar dust disks.Comment: ApJ Letters, in pres

    The ELM Survey. III. A Successful Targeted Survey for Extremely Low Mass White Dwarfs

    Full text link
    Extremely low mass (ELM) white dwarfs (WDs) with masses <0.25 Msun are rare objects that result from compact binary evolution. Here, we present a targeted spectroscopic survey of ELM WD candidates selected by color. The survey is 71% complete and has uncovered 18 new ELM WDs. Of the 7 ELM WDs with follow-up observations, 6 are short-period binaries and 4 have merger times less than 5 Gyr. The most intriguing object, J1741+6526, likely has either a pulsar companion or a massive WD companion making the system a possible supernova Type Ia or .Ia progenitor. The overall ELM Survey has now identified 19 double degenerate binaries with <10 Gyr merger times. The significant absence of short orbital period ELM WDs at cool temperatures suggests that common envelope evolution creates ELM WDs directly in short period systems. At least one-third of the merging systems are halo objects, thus ELM WD binaries continue to form and merge in both the disk and the halo.Comment: 10 pages, accepted to Ap

    Orbital Evolution of Compact White Dwarf Binaries

    Full text link
    The new-found prevalence of extremely low mass (ELM, Mhe<0.2 Msun) helium white dwarfs (WDs) in tight binaries with more massive WDs has raised our interest in understanding the nature of their mass transfer. Possessing small (Menv~1e-3 Msun) but thick hydrogen envelopes, these objects have larger radii than cold WDs and so initiate mass transfer of H-rich material at orbital periods of 6-10 minutes. Building on the original work of D'Antona et al., we confirm the 1e6 yr period of continued inspiral with mass transfer of H-rich matter and highlight that the inspiraling direct-impact double WD binary HM Cancri likely has an ELM WD donor. The ELM WDs have less of a radius expansion under mass loss, thus enabling a larger range of donor masses that can stably transfer matter and become a He mass transferring AM CVn binary. Even once in the long-lived AM CVn mass transferring stage, these He WDs have larger radii due to their higher entropy from the prolonged H burning stage.Comment: 9 pages, 8 figures. Accepted for publication in the Astrophysical Journa

    The Binary Fraction of Low Mass White Dwarfs

    Full text link
    We describe spectroscopic observations of 21 low-mass (<0.45 M_sun) white dwarfs (WDs) from the Palomar-Green Survey obtained over four years. We use both radial velocities and infrared photometry to identify binary systems, and find that the fraction of single, low-mass WDs is <30%. We discuss the potential formation channels for these single stars including binary mergers of lower-mass objects. However, binary mergers are not likely to explain the observed number of single low-mass WDs. Thus additional formation channels, such as enhanced mass loss due to winds or interactions with substellar companions, are likely.Comment: 9 pages, accepted to Ap

    SDSS J163030.58+423305.8: A 40 minute Orbital Period Detached White Dwarf Binary

    Full text link
    We report the discovery of a new detached, double white dwarf system with an orbital period of 39.8 min. We targeted SDSS J163030.58+423305.8 (hereafter J1630) as part of our radial velocity program to search for companions around low-mass white dwarfs using the 6.5m MMT. We detect peak-to-peak radial velocity variations of 576 km/s. The mass function and optical photometry rule out main-sequence companions. In addition, no milli-second pulsar companions are detected in radio observations. Thus the invisible companion is most likely another white dwarf. Unlike the other 39 min binary SDSS J010657.39-100003.3, follow-up high speed photometric observations of J1630 obtained at the McDonald 2.1m telescope do not show significant ellipsoidal variations, indicating a higher primary mass and smaller radius. The absence of eclipses constrain the inclination angle to <82deg. J1630 contains a pair of white dwarfs, 0.3 Msun primary + >0.3 Msun invisible secondary, at a separation of >0.32 Rsun. The two white dwarfs will merge in less than 31 Myr. Depending on the core composition of the companion, the merger will form either a single core-He burning subdwarf star or a rapidly rotating massive white dwarf. The gravitational wave strain from J1630 is detectable by instruments like the Laser Interferometer Space Antenna (LISA) within the first year of operation.Comment: MNRAS Letters, in pres

    Two New Tidally Distorted White Dwarfs

    Full text link
    We identify two new tidally distorted white dwarfs (WDs), SDSS J174140.49+652638.7 and J211921.96-001825.8 (hereafter J1741 and J2119). Both stars are extremely low mass (ELM, < 0.2 Msun) WDs in short-period, detached binary systems. High-speed photometric observations obtained at the McDonald Observatory reveal ellipsoidal variations and Doppler beaming in both systems; J1741, with a minimum companion mass of 1.1 Msun, has one of the strongest Doppler beaming signals ever observed in a binary system (0.59 \pm 0.06% amplitude). We use the observed ellipsoidal variations to constrain the radius of each WD. For J1741, the star's radius must exceed 0.074 Rsun. For J2119, the radius exceeds 0.10 Rsun. These indirect radius measurements are comparable to the radius measurements for the bloated WD companions to A-stars found by the Kepler spacecraft, and they constitute some of the largest radii inferred for any WD. Surprisingly, J1741 also appears to show a 0.23 \pm 0.06% reflection effect, and we discuss possible sources for this excess heating. Both J1741 and J2119 are strong gravitational wave sources, and the time-of-minimum of the ellipsoidal variations can be used to detect the orbital period decay. This may be possible on a timescale of a decade or less.Comment: 6 pages, 4 figures, accepted for publication in the Astrophysical Journa
    corecore