1,170 research outputs found
Above-well, Stark, and potential-barrier resonances of an open square well in a static external electric field
Besides the well known Stark resonances, which are localized in the potential
well and tunnel through the potential barrier created by the dc-field,
"strange" long and short-lived resonances are analytically obtained. These
resonances are not localized inside the potential well. We show that the narrow
ones are localized above the potential well. These narrow resonances give rise
to a {\it peak structure} in a 1D scattering experiment. We also show that the
broad overlapping resonances are associated with the static electric field
potential barrier. These "strange" overlapping resonances do not give rise to a
{\it peak structure} in a 1D scattering experiment. We propose a 2D
experimental set-up where in principle these short-lived states should be
observed as {\it peaks}. Broad overlapping resonances, associated only with the
static electric field potential barrier, could also have observable effects in
a array of quantum wells in the presence of a truncated static electric
field. This last problem is associated with the resonance tunnelling phenomena
which are used in the construction of resonance-tunnelling diodes and
transistors.Comment: submitted to Phys. Rev. A, April 08 200
Photoassisted sequential resonant tunneling through superlattices
We have analyzed theoretically the photoassisted tunneling current through a
superlattice in the presence of an AC potential. For that purpose we have
developed a new model to calculate the sequential resonant currrent trhough a
superlattice based in the TRansfer Hamiltonian Method. The tunneling current
presents new features due to new effective tunneling chanels coming from the
photoside bands induced by the AC field. Our theoretical results are in good
agreement with the available experimental evidence.Comment: Revtex 3.0 4 pages, 4 figures uuencoded compressed tar-fil
Quantum-mechanical wavepacket transport in quantum cascade laser structures
We present a viewpoint of the transport process in quantum cascade laser
structures in which spatial transport of charge through the structure is a
property of coherent quantum-mechanical wavefunctions. In contrast, scattering
processes redistribute particles in energy and momentum but do not directly
cause spatial motion of charge.Comment: 6 pages, 5 figures included in tex, to appear in Physical Review
Sequential resonant tunneling in quantum cascade lasers
A model of sequential resonant tunneling transport between two-dimensional
subbands that takes into account explicitly elastic scattering is investigated.
It is compared to transport measurements performed on quantum cascade lasers
where resonant tunneling processes are known to be dominating. Excellent
agreement is found between experiment and theory over a large range of current,
temperature and device structures
Optical phonon scattering and theory of magneto-polarons in a quantum cascade laser in a strong magnetic field
We report a theoretical study of the carrier relaxation in a quantum cascade
laser (QCL) subjected to a strong magnetic field. Both the alloy (GaInAs)
disorder effects and the Frohlich interaction are taken into account when the
electron energy differences are tuned to the longitudinal optical (LO) phonon
energy. In the weak electron-phonon coupling regime, a Fermi's golden rule
computation of LO phonon scattering rates shows a very fast non-radiative
relaxation channel for the alloy broadened Landau levels (LL's). In the strong
electron-phonon coupling regime, we use a magneto-polaron formalism and compute
the electron survival probabilities in the upper LL's with including increasing
numbers of LO phonon modes for a large number of alloy disorder configurations.
Our results predict a nonexponential decay of the upper level population once
electrons are injected in this state.Comment: 10 pages, 23 figure
Microscopic modelling of perpendicular electronic transport in doped multiple quantum wells
We present a microscopic calculation of transport in strongly doped
superlattices where domain formation is likely to occur. Our theoretical method
is based on a current formula involving the spectral functions of the system,
and thus allows, in principle, a systematic investigation of various
interaction mechanisms. Taking into account impurity scattering and optical
phonons we obtain a good quantitative agreement with existing experimental data
from Helgesen and Finstad (J. Appl. Phys. 69, 2689, (1991)). Furthermore the
calculated spectral functions indicate a significant increase of the average
intersubband spacing compared to the bare level differences which might explain
the experimental trend.Comment: 10 pages 5 figure
Nanohelices as superlattices: Bloch oscillations and electric dipole transitions
Subjecting a nanohelix to a transverse electric field gives rise to superlattice behavior with tunable electronic properties. We theoretically investigate such a system and find Bloch oscillations and negative differential conductance when a longitudinal electric field (along the nanohelix axis) is also applied. Furthermore, we study dipole transitions across the transverse-electric-field-induced energy gap, which can be tuned to the eulogized terahertz frequency range by experimentally attainable external fields. We also reveal a photogalvanic effect by shining circularly polarized light onto our helical quantum wire.We acknowledge financial support from the CNRS and from the ANR under Grant No. ANR-14-CE26-0005 Q-MetaMat, as well as the EU H2020 RISE project CoExAN (Grant No. H2020-644076), EU FP7 ITN NOTEDEV (Grant No. FP7-607521), and the FP7 IRSES projects CANTOR (Grant No. FP7-612285), QOCaN (Grant No. FP7-316432), and InterNoM (Grant No. FP7-612624)
Density-matrix theory of the optical dynamics and transport in quantum cascade structures: The role of coherence
The impact of coherence on the nonlinear optical response and stationary
transport is studied in quantum cascade laser structures. Nonequilibrium
effects such as pump-probe signals, the spatio-temporally resolved electron
density evolution, and the subband population dynamics (Rabi flopping) as well
as the stationary current characteristics are investigated within a microscopic
density-matrix approach. Focusing on the stationary current and the recently
observed gain oscillations, it is found that the inclusion of coherence leads
to observable coherent effects in opposite parameter regimes regarding the
relation between the level broadening and the tunnel coupling across the main
injection barrier. This shows that coherence plays a complementary role in
stationary transport and nonlinear optical dynamics in the sense that it leads
to measurable effects in opposite regimes. For this reason, a fully coherent
consideration of such nonequilibrium structures is necessary to describe the
combined optical and transport propertiesComment: 14 pages, 11 figures; final versio
Intersubband gain in a Bloch oscillator and Quantum cascade laser
The link between the inversion gain of quantum cascade structures and the
Bloch gain in periodic superlattices is presented. The proposed theoretical
model based on the density matrix formalism is able to treat the gain mechanism
of the Bloch oscillator and Quantum cascade laser on the same footing by taking
into account in-plane momentum relaxation. The model predicts a dispersive
contribution in addition to the (usual) population-inversion-dependent
intersubband gain in quantum cascade structures and - in the absence of
inversion - provides the quantum mechanical description for the dispersive gain
in superlattices. It corroborates the predictions of the semi-classical
miniband picture, according to which gain is predicted for photon energies
lower than the Bloch oscillation frequency, whereas net absorption is expected
at higher photon energies, as a description which is valid in the
high-temperature limit. A red-shift of the amplified emission with respect to
the resonant transition energy results from the dispersive gain contribution in
any intersubband transition, for which the population inversion is small.Comment: 10 pages, 6 figure
Subband population in a single-wall carbon nanotube diode
We observe current rectification in a molecular diode consisting of a
semiconducting single-wall carbon nanotube and an impurity. One half of the
nanotube has no impurity, and it has a current-voltage (I-V) charcteristic of a
typical semiconducting nanotube. The other half of the nanotube has the
impurity on it, and its I-V characteristic is that of a diode. Current in the
nanotube diode is carried by holes transported through the molecule's
one-dimensional subbands. At 77 Kelvin we observe a step-wise increase in the
current through the diode as a function of gate voltage, showing that we can
control the number of occupied one-dimensional subbands through electrostatic
doping.Comment: to appear in Physical Review Letters. 4 pages & 3 figure
- …