143 research outputs found

    Constraints on the second order transport coefficients of an uncharged fluid

    Full text link
    In this note we have tried to determine how the existence of a local entropy current with non-negative divergence constrains the second order transport coefficients of an uncharged fluid, following the procedure described in \cite{Romatschke:2009kr}. Just on symmetry ground the stress tensor of an uncharged fluid can have 15 transport coefficients at second order in derivative expansion. The condition of entropy-increase gives five relations among these 15 coefficients. So finally the relativistic stress tensor of an uncharged fluid can have 10 independent transport coefficients at second order.Comment: 43 page

    Relativistic Viscous Fluid Dynamics and Non-Equilibrium Entropy

    Full text link
    Fluid dynamics corresponds to the dynamics of a substance in the long wavelength limit. Writing down all terms in a gradient (long wavelength) expansion up to second order for a relativistic system at vanishing charge density, one obtains the most general (causal) equations of motion for a fluid in the presence of shear and bulk viscosity, as well as the structure of the non-equilibrium entropy current. Requiring positivity of the divergence of the non-equilibrium entropy current relates some of its coefficients to those entering the equations of motion. I comment on possible applications of these results for conformal and non-conformal fluids.Comment: 25 pages, no figures; v2: matches published versio

    Radiation from the non-extremal fuzzball

    Full text link
    The fuzzball proposal says that the information of the black hole state is distributed throughout the interior of the horizon in a `quantum fuzz'. There are special microstates where in the dual CFT we have `many excitations in the same state'; these are described by regular classical geometries without horizons. Jejjala et.al constructed non-extremal regular geometries of this type. Cardoso et. al then found that these geometries had a classical instability. In this paper we show that the energy radiated through the unstable modes is exactly the Hawking radiation for these microstates. We do this by (i) starting with the semiclassical Hawking radiation rate (ii) using it to find the emission vertex in the CFT (iii) replacing the Boltzman distributions of the generic CFT state with the ones describing the microstate of interest (iv) observing that the emission now reproduces the classical instability. Because the CFT has `many excitations in the same state' we get the physics of a Bose-Einstein condensate rather than a thermal gas, and the usually slow Hawking emission increases, by Bose enhancement, to a classically radiated field. This system therefore provides a complete gravity description of information-carrying radiation from a special microstate of the nonextremal hole.Comment: corrected typo

    The Holographic Universe

    Get PDF
    We present a holographic description of four-dimensional single-scalar inflationary universes in terms of a three-dimensional quantum field theory. The holographic description correctly reproduces standard inflationary predictions in their regime of applicability. In the opposite case, wherein gravity is strongly coupled at early times, we propose a holographic description in terms of perturbative QFT and present models capable of satisfying the current observational constraints while exhibiting a phenomenology distinct from standard inflation. This provides a qualitatively new method for generating a nearly scale-invariant spectrum of primordial cosmological perturbations.Comment: 20 pages, 5 figs; extended version of arXiv:0907.5542 including background material and detailed derivations. To appear in Proceedings of 1st Mediterranean Conference on Classical and Quantum Gravit

    Holographic Non-Gaussianity

    Full text link
    We investigate the non-Gaussianity of primordial cosmological perturbations within our recently proposed holographic description of inflationary universes. We derive a holographic formula that determines the bispectrum of cosmological curvature perturbations in terms of correlation functions of a holographically dual three-dimensional non-gravitational quantum field theory (QFT). This allows us to compute the primordial bispectrum for a universe which started in a non-geometric holographic phase, using perturbative QFT calculations. Strikingly, for a class of models specified by a three-dimensional super-renormalisable QFT, the primordial bispectrum is of exactly the factorisable equilateral form with f_nl^eq=5/36, irrespective of the details of the dual QFT. A by-product of this investigation is a holographic formula for the three-point function of the trace of the stress-energy tensor along general holographic RG flows, which should have applications outside the remit of this work.Comment: 42 pages, 2 figs, published versio

    Hydrodynamics of R-charged D1-branes

    Full text link
    We study the hydrodynamic properties of strongly coupled SU(N)SU(N) Yang-Mills theory of the D1-brane at finite temperature and at a non-zero density of R-charge in the framework of gauge/gravity duality. The gravity dual description involves a charged black hole solution of an Einstein-Maxwell-dilaton system in 3 dimensions which is obtained by a consistent truncation of the spinning D1-brane in 10 dimensions. We evaluate thermal and electrical conductivity as well as the bulk viscosity as a function of the chemical potential conjugate to the R-charges of the D1-brane. We show that the ratio of bulk viscosity to entropy density is independent of the chemical potential and is equal to 1/4π1/4\pi. The thermal conductivity and bulk viscosity obey a relationship similar to the Wiedemann-Franz law. We show that at the boundary of thermodynamic stability, the charge diffusion mode becomes unstable and the transport coefficients exhibit critical behaviour. Our method for evaluating the transport coefficients relies on expressing the second order differential equations in terms of a first order equation which dictates the radial evolution of the transport coefficient. The radial evolution equations can be solved exactly for the transport coefficients of our interest. We observe that transport coefficients of the D1-brane theory are related to that of the M2-brane by an overall proportionality constant which sets the dimensions.Comment: 57 pages, 12 figure

    Holography for chiral scale-invariant models

    Full text link
    Deformation of any d-dimensional conformal field theory by a constant null source for a vector operator of dimension (d + z -1) is exactly marginal with respect to anisotropic scale invariance, of dynamical exponent z. The holographic duals to such deformations are AdS plane waves, with z=2 being the Schrodinger geometry. In this paper we explore holography for such chiral scale-invariant models. The special case of z=0 can be realized with gravity coupled to a scalar, and is of particular interest since it is related to a Lifshitz theory with dynamical exponent two upon dimensional reduction. We show however that the corresponding reduction of the dual field theory is along a null circle, and thus the Lifshitz theory arises upon discrete light cone quantization of an anisotropic scale invariant field theory.Comment: 62 pages; v2, published version, minor improvements and references adde

    Holographic Renormalization for z=2 Lifshitz Space-Times from AdS

    Full text link
    Lifshitz space-times with critical exponent z=2 can be obtained by dimensional reduction of Schroedinger space-times with critical exponent z=0. The latter space-times are asymptotically AdS solutions of AdS gravity coupled to an axion-dilaton system and can be uplifted to solutions of type IIB supergravity. This basic observation is used to perform holographic renormalization for 4-dimensional asymptotically z=2 locally Lifshitz space-times by Scherk-Schwarz dimensional reduction of the corresponding problem of holographic renormalization for 5-dimensional asymptotically locally AdS space-times coupled to an axion-dilaton system. We can thus define and characterize a 4-dimensional asymptotically locally z=2 Lifshitz space-time in terms of 5-dimensional AdS boundary data. In this setup the 4-dimensional structure of the Fefferman-Graham expansion and the structure of the counterterm action, including the scale anomaly, will be discussed. We find that for asymptotically locally z=2 Lifshitz space-times obtained in this way there are two anomalies each with their own associated nonzero central charge. Both anomalies follow from the Scherk--Schwarz dimensional reduction of the 5-dimensional conformal anomaly of AdS gravity coupled to an axion-dilaton system. Together they make up an action that is of the Horava-Lifshitz type with nonzero potential term for z=2 conformal gravity.Comment: 32 pages, v2: modified discussion of the central charge

    Generalized Holographic Quantum Criticality at Finite Density

    Get PDF
    We show that the near-extremal solutions of Einstein-Maxwell-Dilaton theories, studied in ArXiv:1005.4690, provide IR quantum critical geometries, by embedding classes of them in higher-dimensional AdS and Lifshitz solutions. This explains the scaling of their thermodynamic functions and their IR transport coefficients, the nature of their spectra, the Gubser bound, and regulates their singularities. We propose that these are the most general quantum critical IR asymptotics at finite density of EMD theories.Comment: v4: Corrected the scaling equation for the conductivity in section 9.

    Spectral Flow in AdS(3)/CFT(2)

    Full text link
    We study the spectral flowed sectors of the H3 WZW model in the context of the holographic duality between type IIB string theory in AdS(3)x S^3 x T^4 with NSNS flux and the symmetric product orbifold of T^4. We construct explicitly the physical vertex operators in the flowed sectors that belong to short representations of the superalgebra, thus completing the bulk-to-boundary dictionary for 1/2 BPS states. We perform a partial calculation of the string three-point functions of these operators. A complete calculation would require the three-point couplings of non-extremal flowed operators in the H3 WZW model, which are at present unavailable. In the unflowed sector, perfect agreement has recently been found between the bulk and boundary three-point functions of 1/2 BPS operators. Assuming that this agreement persists in the flowed sectors, we determine certain unknown three-point couplings in the H3 WZW model in terms of three-point couplings of affine descendants in the SU(2) WZW model.Comment: 50 pages, 2 figure
    corecore