17 research outputs found

    Swarm robotics: a review from the swarm engineering perspective

    Full text link

    Skill Combination for Reinforcement Learning

    No full text

    On the classification of interactive user behaviour indices

    No full text

    Cooperative Multi-agent Deep Reinforcement Learning in a 2 Versus 2 Free-Kick Task

    No full text
    In multi-robot reinforcement learning the goal is to enable a team of robots to learn a coordinated behavior from direct interaction with the environment. Here, we provide a comparison of the two main approaches to tackle this challenge, namely independent learners (IL) and joint-action learners (JAL). IL is suitable for highly scalable domains, but it faces non-stationarity issues. Whereas, JAL overcomes non-stationarity and can generate highly coordinated behaviors, but it presents scalability issues due to the increased size of the search space. We implement and evaluate these methods in a new multi-robot cooperative and adversarial soccer scenario, called 2 versus 2 free-kick task, where scalability issues affecting JAL are less relevant given the small number of learners. In this work, we implement and deploy these methodologies on a team of simulated NAO humanoid robots. We describe the implementation details of our scenario and show that both approaches are able to achieve satisfying solutions. Notably, we observe joint-action learners to have a better performance than independent learners in terms of success rate and quality of the learned policies. Finally, we discuss the results and provide conclusions based on our findings

    Batch Reinforcement Learning

    No full text
    Abstract Batch reinforcement learning is a subfield of dynamic programming-based reinforcement learning. Originally defined as the task of learning the best possible policy from a fixed set of a priori-known transition samples, the (batch) algorithms developed in this field can be easily adapted to the classical online case, where the agent interacts with the environment while learning. Due to the efficient use of collected data and the stability of the learning process, this research area has attracted a lot of attention recently. In this chapter, we introduce the basic principles and the theory behind batch reinforcement learning, describe the most important algorithms, exemplarily discuss ongoing research within this field, and briefly survey real-world applications of batch reinforcement learning.
    corecore