206 research outputs found

    The role of the Fraunhofer lines in solar brightness variability

    Full text link
    The solar brightness varies on timescales from minutes to decades. A clear identification of the physical processes behind such variations is needed for developing and improving physics-based models of solar brightness variability and reconstructing solar brightness in the past. This is, in turn, important for better understanding the solar-terrestrial and solar-stellar connections. We estimate the relative contributions of the continuum, molecular, and atomic lines to the solar brightness variations on different timescales. Our approach is based on the assumption that variability of the solar brightness on timescales greater than a day is driven by the evolution of the solar surface magnetic field. We calculated the solar brightness variations employing the solar disc area coverage of magnetic features deduced from the MDI/SOHO observations. The brightness contrasts of magnetic features relative to the quiet Sun were calculated with a non-LTE radiative transfer code as functions of disc position and wavelength. By consecutive elimination of molecular and atomic lines from the radiative transfer calculations, we assessed the role of these lines in producing solar brightness variability. We show that the variations in Fraunhofer lines define the amplitude of the solar brightness variability on timescales greater than a day and even the phase of the total solar irradiance variability over the 11-year cycle. We also demonstrate that molecular lines make substantial contribution to solar brightness variability on the 11-year activity cycle and centennial timescales. In particular, our model indicates that roughly a quarter of the total solar irradiance variability over the 11-year cycle originates in molecular lines. The maximum of the absolute spectral brightness variability on timescales greater than a day is associated with the CN violet system between 380 and 390 nm.Comment: 9 pages, 4 figures, accepted for publication in Astronomy&Astrophysic

    Reflection of electrons from a domain wall in magnetic nanojunctions

    Full text link
    Electronic transport through thin and laterally constrained domain walls in ferromagnetic nanojunctions is analyzed theoretically. The description is formulated in the basis of scattering states. The resistance of the domain wall is calculated in the regime of strong electron reflection from the wall. It is shown that the corresponding magnetoresistance can be large, which is in a qualitative agreement with recent experimental observations. We also calculate the spin current flowing through the wall and the spin polarization of electron gas due to reflections from the domain wall.Comment: 7 pages, 4 figure

    Magnetoresistance of a semiconducting magnetic wire with domain wall

    Full text link
    We investigate theoretically the influence of the spin-orbit interaction of Rashba type on the magnetoresistance of a semiconducting ferromagnetic nanostructure with a laterally constrained domain wall. The domain wall is assumed sharp (on the scale of the Fermi wave length of the charge carriers). It is shown that the magnetoresistance in such a case can be considerably large, which is in a qualitative agreement with recent experimental observations. It is also shown that spin-orbit interaction may result in an increase of the magnetoresistance. The role of localization corrections is also briefly discussed.Comment: 5 pages, 2 figure

    The impact of innovations in the production of biologically valuable food products on supply chain management in the regional economy

    Get PDF
    Abstract— The article shows a study of the role of supply chain management of innovative biologically valuable food products in the industrial development and economy of the region. The analysis of the process of updating the assortment of food products based on the introduction of innovative developments and production principles conducive to the release of a healthy diet product (innovative product) is presented. The main provisions of the concept of healthy food products, the category of “innovative food products” are analyzed. The article systematizes the definitions of the concept of “innovative product”. Based on the results of the study, features, functional properties and characteristic features of an innovative food product are determined. Based on the concept of “innovative food product”, the concepts of “new food product”, “improved food product”, and “modified food product” are formulated. A classification model of innovative food products is presented. Based on it, it is shown that the development, production and sale of an innovative food product two functions: economic and social. The study made it possible to formulate the main criteria that make it possible to attribute a food product to a group of innovative food products. The article describes the characteristics of an innovative food product, describes market and consumer properties. The author's definitions of concepts are given: “innovative food product”, “new food product”, “improved food product”, “modified food product”. A classification of innovative food products is proposed

    Experimental Observation of the Inverse Proximity Effect in Superconductor/Ferromagnet Layered Structures

    Full text link
    We have studied the nuclear magnetic resonance (NMR) of 51V nuclei in the superconductor/ferromagnet thin film heterostructures Ni/V/Ni and Pd{1-x}Fe{x}/V/Pd{1-x}Fe{x} in the normaland superconducting state. Whereas the position and shape of the NMR line in the normal state for the trilayers is identical to that observed in a single V-layer, in the superconducting state the line shape definitely changes, developing a systematic distortion of the high-field wing of the resonance line. We consider this as the first experimental evidence for the penetration of ferromagnetism into the superconducting layer, a phenomenon which has been theoretically predicted recently and dubbed the inverse proximity effect.Comment: about 5 pages, 3 figures, 1 tabl

    On the hyperfine interaction in rare-earth Van Vleck paramagnets at high magnetic fields

    Full text link
    An influence of high magnetic fields on hyperfine interaction in the rare-earth ions with non-magnetic ground state (Van Vleck ions) is theoretically investigated for the case of Tm3+Tm^{3+} ion in axial symmetrical crystal electric field (ethylsulphate crystal). It is shown that magnetic-field induced distortions of 4f4f-electron shell lead to essential changes in hyperfine magnetic field at the nucleus. The proposed theoretical model is in agreement with recent experimental data.Comment: 4 pages, no figures, submitted to J. Phys. : Cond. Mat

    Resistance of a domain wall in the quasiclassical approach

    Full text link
    Starting from a simple microscopic model, we have derived a kinetic equation for the matrix distribution function. We employed this equation to calculate the conductance GG in a mesoscopic F'/F/F' structure with a domain wall (DW). In the limit of a small exchange energy JJ and an abrupt DW, the conductance of the structure is equal to G2d=4σ↑σ↓/(σ↑+σ↓)LG_{2d}=4\sigma_{\uparrow}\sigma_{\downarrow }/(\sigma_{\uparrow}+\sigma_{\downarrow})L. Assuming that the scattering times for electrons with up and down spins are close to each other we show that the account for a finite width of the DW leads to an increase in this conductance. We have also calculated the spatial distribution of the electric field in the F wire. In the opposite limit of large JJ (adiabatic variation of the magnetization in the DW) the conductance coincides in the main approximation with the conductance of a single domain structure G1d=(σ↑+σ↓)/L% G_{1d}=(\sigma_{\uparrow}+\sigma_{\downarrow})/L. The account for rotation of the magnetization in the DW leads to a negative correction to this conductance. Our results differ from the results in papers published earlier.Comment: 11 pages; replaced with revised versio
    • 

    corecore