21,286 research outputs found

    The "zeroth law" of turbulence: Isotropic turbulence simulations revisited

    Full text link
    The dimensionless kinetic energy dissipation rate C_epsilon is estimated from numerical simulations of statistically stationary isotropic box turbulence that is slightly compressible. The Taylor microscale Reynolds number Re_lambda range is 20 < Re_lambda < 220 and the statistical stationarity is achieved with a random phase forcing method. The strong Re_lambda dependence of C_epsilon abates when Re_lambda approx. 100 after which C_epsilon slowly approaches approx 0.5 a value slightly different to previously reported simulations but in good agreement with experimental results. If C_epsilon is estimated at a specific time step from the time series of the quantities involved it is necessary to account for the time lag between energy injection and energy dissipation. Also, the resulting value can differ from the ensemble averaged value by up to +-30%. This may explain the spread in results from previously published estimates of C_epsilon.Comment: 7 pages, 7 figures. Submitted to Phys. Rev.

    Logarithmic scaling in the near-dissipation range of turbulence

    Full text link
    A logarithmic scaling for structure functions, in the form Sp[ln(r/η)]ζpS_p \sim [\ln (r/\eta)]^{\zeta_p}, where η\eta is the Kolmogorov dissipation scale and ζp\zeta_p are the scaling exponents, is suggested for the statistical description of the near-dissipation range for which classical power-law scaling does not apply. From experimental data at moderate Reynolds numbers, it is shown that the logarithmic scaling, deduced from general considerations for the near-dissipation range, covers almost the entire range of scales (about two decades) of structure functions, for both velocity and passive scalar fields. This new scaling requires two empirical constants, just as the classical scaling does, and can be considered the basis for extended self-similarity

    Mask-Less Crystalline Silicon Solar Cell (May 2009)

    Get PDF
    A mask-less crystalline silicon solar cell was made by using a surface texturing technique coupled with an oblique aluminum evaporation. To achieve this, trenches with a steep sidewall are mechanically grooved into the bulk silicon using the KS 775 Wafer Saw. More importantly, metal evaporation with the CVC evaporator at angles near parallel to the wafer surface allows deposition to occur along the side of the trenches creating the self-aligning front metal contacts. Of the four solar cells that made it through the processing, only one solar cell showed diode like 1-V characteristics. The dark conditions shows a diode 1-V where current doesn’t flow with a negative applied voltage and in the forward applied voltage, there is a turn on voltage around 0.6V, typical of a silicon diode. This is followed by an exponential gain in current. The n value of the diode is under dark conditions is 1.7. Under illuminated conditions, the I-V curve shows a dramatic negative current for voltages below 0.25V. This isn’t the I-V curve of a solar cell but it does show that this device is light sensitive. The other three solar cells made are resistors with resistances of 4 Ω, 2 Ω and 19.2 Ω for wafers 3, 4 and 5 respectively. The shorts on the solar cells are due to a nonuniformly coated N-250 spin on glass (SOG) for the n+ layer on the p type wafer. Air pockets remained in the trenches and kept certain spots on the wafer surface to remain p. When the Al front contacts and bus paste are applied to the solar cells, it creates the p-n junction shorts. This was confirmed by breaking wafer 3 into smaller pieces where one of the pieces had a uniform n+ layer that showed I-V curves of a diode

    Learning Incoherent Subspaces: Classification via Incoherent Dictionary Learning

    Get PDF
    In this article we present the supervised iterative projections and rotations (s-ipr) algorithm, a method for learning discriminative incoherent subspaces from data. We derive s-ipr as a supervised extension of our previously proposed iterative projections and rotations (ipr) algorithm for incoherent dictionary learning, and we employ it to learn incoherent sub-spaces that model signals belonging to different classes. We test our method as a feature transform for supervised classification, first by visualising transformed features from a synthetic dataset and from the ‘iris’ dataset, then by using the resulting features in a classification experiment
    corecore