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Abstract

In this article we present the supervised iterative projections and rota-

tions (s-ipr) algorithm, a method for learning discriminative incoherent

subspaces from data. We derive s-ipr as a supervised extension of our

previously proposed iterative projections and rotations (ipr) algorithm

for incoherent dictionary learning, and we employ it to learn incoherent

sub-spaces that model signals belonging to different classes. We test our

method as a feature transform for supervised classification, first by visu-

alising transformed features from a synthetic dataset and from the ‘iris’

dataset, then by using the resulting features in a classification experiment.

∗This work has been supported by the Platform Grant EP/K009559/1 and the Leadership
Fellowship EP/G007144/1, both from the UK Engineering and Physical Sciences Research
Council (EPSRC).
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1 Introduction: Classification And Feature Trans-

forms

Supervised classification is one of the classic problems in machine learning where

a system is designed to discriminate the class of an observed signal, having

previously observed representative examples from the considered classes [1].

Typically, a classification algorithm consists of a training phase where class-

specific models are learned from labelled samples, followed by a testing phase

where unlabelled data are classified by comparison with the learned models.

Both training and testing comprise various stages. Firstly, we observe a signal

that measures a process of interest, such as the recording of a sound or image, or

a log of the temperatures in a particular geographic area. Then, a set of features

are extracted from the raw signals using signal processing techniques. This step

is performed in order to reduce the dimensionality of the data and provide a

new signal that allows generalisation among examples of the same class, while

retaining enough information to discriminate between different classes.

Following the features extraction step, a feature transform can be employed

to further reduce the dimensionality of the data and to enhance discrimination

between classes. Thus classification benefits from feature transforms especially

when features are not separable, that is, when it is not possible to optimise

a simple function that maps features belonging to signals of a given class to

the corresponding class. A further dimensionalty reduction may be performed

when dealing with high dimensional signals (such as audio or high resolution

images) by fitting the parameters of global statistical distributions with features

learned on portions of the signal. Models learned on different classes are finally

compared using a distance metric to the model learned from an unlabelled signal,

which is typically assigned to the nearest class.
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1.1 Traditional Algorithms For Feature Transform

Two of the main feature transform techniques include principal component anal-

ysis (pca) [2] and Fisher’s linear discriminant analysis (lda) [1].

1.1.1 pca

Let
{
xm ∈ RN

}M
m=1

be a set of vectors containing features extracted from M

training signals. The goal of pca is to learn an orthonormal set of basis functions{
φk ∈ RN

}N
k=1

such that ||φk||2 = 1 and 〈φi,φj〉 = 0 ∀i 6= j that are placed

along the columns of a so-called dictionary Φ ∈ RN×N . The bases are optimised

from the data to identify their principal components, that is, the sub-spaces that

retain the maximum variance of the features.

To compute the dictionary, the eigenvalue decomposition of the outer prod-

uct

XXT = QΛQT (1)

is first calculated, where X contains the features xm along its columns. Then,

the L eigenvectors corresponding to the L largest eigenvalues are selected from

the matrix Q, and scaled to unit `2 norm to form the dictionary Φ ∈ RN×L.

A new set of transformed features ypca = ΦΦTx is computed by projecting

the data onto the sub-space spanned by the columns of Φ (that is, onto the

L-dimensional principal sub-space). This operation reduces the dimensionality

of the features by projecting them onto a linear subspace embedded in RN . It

is an unsupervised technique that does not exploit knowledge about the classes

associated with the training set, but implicitly relies in the assumption that the

principal component directions encode relevant differences between classes.
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1.1.2 lda

In contrast, lda is a supervised method for feature transform whose objective

is to explicitly maximise the separability of classes in the transformed domain.

Let Γp be a set indexing features extracted from data belonging to the p-th

class, and |Γp| be its cardinality. Let

x̄p
def
=

1

|Γp|
∑
m∈Γp

xm (2)

be the p-th class feature centroid, and x̄ def
=
∑M
m=1 xm the centroid of the

features extracted from the entire training dataset. The between-classes scatter

matrix

Sb
def
=

P∑
p=1

|Γp| (x̄p − x̄) (x̄p − x̄)
T (3)

is defined to measure the mutual distances between the centroids of different

classes, while the within-classes scatter matrix

Sw
def
=

P∑
p=1

∑
m∈Γp

(xm − x̄p) (xm − x̄p)T (4)

quantifies the distances between features belonging to the same class. Let W

be a linear transform matrix. To maximise an objective function J (W )
def
=

|WTSbW |
|WTSwW | that promotes features belonging to the same class to be near each

other and far away from features belonging to other classes, the eigenvalue

decomposition of the matrix

S†wSb = QΛQT (5)

is computed, and the features x are projected onto the space spanned by its

(P − 1) eigenvectors corresponding to the largest (P − 1) eigenvalues (that is,
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onto a space of dimensionality equal to the number of classes minus one).

lda explicitly seeks to enhance the discriminative power of features by op-

timising the objective J .

1.2 Supervised pca

Related works that extend pca include the supervised pca (s-pca) proposed by

Barshan et al. [3]. s-pca is based on the theory of reproducing kernel Hilbert

spaces (rkhs) (that are spaces of functions which satisfy certain properties and

map elements from an arbitrary set to the set of complex numbers) [4], and

on the so-called Hilbert-Schmidt independence criterion (hsic)[5]. The hsic is

used to estimate the statistical dependence of two random variables based on

the fact that this quantity is related to the correlation of functions belonging

to their respective rkhs. While hsic is defined in terms of the probability

density function of the two random variables, empirical estimates of hsic can

be obtained from finite sequences of their realisations. The empirical hsic can be

used in turn to construct an objective function that maximises the dependence

between the two variables. Hence, this strategy is adopted within the context

of classification to maximise the statistical dependence between a transformed

feature ys-pca and its corresponding class c.

In practice, s-pca differs from pca in that it calculates the eigenvalue de-

composition of a matrix R defined as follows:

R
def
= XHLHXT (6)

were H def
= I − eeT is a so-called centring matrix1 and L def

= ccT is the kernel

matrix of the class variable that is constructed by computing the outer product

of the vectors resulting from assigning different numerical values to each class.
1Here e is a vector of ones.
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1.3 Other related work

The union of incoherent sub-spaces model proposed by Schnass and Vandergheynst

[6] employs a very similar intuition to the one that inspired our proposed

method, and models features belonging to different classes using incoherent

subspaces. Other methods for supervised dimensionality reduction include met-

ric learning algorithms [7], sufficient dimensionality reduction [8] and Bair’s

supervised principal components [9].

Manifold learning techniques are used to model nonlinear data and reviewed

by Van Der Maaten et al. [10]. Finally, the sparse sub-space clustering technique

developed by Elhamifar and Vidal [11] is aimed at identifying vectors that belong

to an union of sub-spaces, and hence apply concepts form sparse approximation

to clustering.

1.4 Paper organisation

The method proposed in this paper is aimed at learning discriminative sub-

spaces that allow dimensionality reduction, while at the same time enhancing

the separability between classes. It is derived from our previous work on learning

incoherent dictionaries for sparse approximation [12].

The incoherent dictionary learning problem will be introduced in Section

2, while Section 3 will contain the main contribution of this paper consisting

in learning incoherent subspaces for classification. Numerical experiments are

presented in Section 4, and conclusions are drawn in Section 5.
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2 Incoherent Dictionary Learning

A sparse approximation of a signal x ∈ RN is a linear combination of K ≥ N

basis functions
{
φk ∈ RN

}K
k=1

called atoms described by:

x ≈ x̃ =

K∑
k=1

αkφk (7)

where the vector of coefficients α contains a small number of non-zero compo-

nents, corresponding to a small number of atoms actively contributing to the

approximation x̃. Given a signal x and a dictionary, various algorithms have

been proposed to find a sparse approximation that minimises the residual error

||x− x̃||2[13].

Dictionary learning aims at optimising a dictionary Φ for sparse approxima-

tion given a set of training data. It is an unsupervised technique that can be

thought as being a generalisation of pca, as both methods learn linear subspaces

that minimise the approximation error of the signals. Dictionary learning, how-

ever, is generally more flexible than pca because it can be employed to learn

more general non-orthogonal over-complete dictionaries [14].

2.1 The incoherent dictionary learning problem

Dictionaries for sparse approximation have important intrinsic properties that

describe the relations between their atoms, like the mutual coherence µ(Φ) =

max
i 6=j
〈φi,φj〉 that is defined as the maximum inner product between any two

different atoms. The goal of incoherent dictionary learning is to learn atoms

that are well adapted to sparsely approximate a set of training signals, and that

are at the same time mutually incoherent [12].

Given a set of M training signals contained in the columns of the matrix

X ∈ RN×M , the incoherent dictionary learning problem can be expressed as:
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Φ?,A? = arg min
Φ,A

||X −ΦA||F (8)

such that µ(Φ) ≤ µ0

||αm||0 ≤ S ∀m

where µ0 is a fixed mutual coherence constraint, the `0 pseudo-norm ||·||0 counts

the number of non-zero components of its argument, S is a fixed number of ac-

tive atoms, and αm denotes the m-th column of A. Setting a specific value of

the parameter S indicates that signals live on (or near) a union of subspaces

of dimension S, and hence depends on the type of observed signals and on the

number of atoms K (a large number of atoms that cover different directions in

an N -dimensional space is likely to widen the set of signals that may be approx-

imated using such union of sub-spaces). To obtain a dictionary with minimal

mutual coherence, the parameter µ0 can be set to the lower bound on the mutual

coherence of a N ×K dictionary µ0 =
√

(K −N)/N(K − 1)[12]. This implies

that less coherent dictionaries necessarily have a smaller number of atoms, de-

termining a tradeoff between the parameters S and µ0 which ultimately needs

to be investigated according to the problem at hand.

Algorithms for (incoherent) dictionary learning generally follow an alternate

optimisation heuristic, iteratively updating Φ and A until a stopping criterion

is met. In the case of the iterative projections and rotations algorithm (ipr)

algorithm [12], a dictionary de-correlation step is added after updating the dic-

tionary in order to satisfy the mutual coherence constraint.

Given X, fixed µ0, S and a stopping criterion (such as a maximum number

of iterations), the optimisation of (8) is tackled by iteratively performing the

following steps:
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• Sparse coding : fix Φ and compute the matrix A using a suitable sparse

approximation method.

• Dictionary update: fix A and update Φ using a suitable method for dic-

tionary learning.

• Dictionary de-correlation: given X, Φ and A update the dictionary Φ to

reduce its mutual coherence under the level µ0.

2.2 The iterative projections and rotations algorithm

The ipr algorithm has been proposed in order to solve the dictionary de-

correlation step, while ensuring that the updated dictionary provides a sparse

approximation with low residual norm, as indicated by the objective function

(8) [12].

The ipr algorithm requires the calculation of the Gram matrix G = ΦTΦ

which contains the inner products between any two atoms in the dictionary.

G is iteratively projected onto two constraint sets, namely the structural con-

straint set Kµ0
and the spectral constraint set F . The former is the set of

symmetric square matrices with unit diagonal values and off-diagonal values

with magnitude smaller or equal than µ0:

Kµ0

def
=

{
K ∈ RK×K : K = KT , ki,i = 1,max

i>j
|ki,j | ≤ µ0

}
.

The latter is the set of symmetric positive semidefinite square matrices with

rank smaller than or equal to N :

F def
=
{
F ∈ RK×K : F = F T , eig(F ) ≥ 0, rank(F ) ≤ N

}
where the operator eig(·) returns the vector of eigenvalues of its argument.

Starting from the Gram matrix of an initial dictionary Φ, the ipr method
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iteratively performs the following operations.

• Projection onto the structural constraint set. The projectionK = PKµ0 (G)

can be obtained by:

1. setting ki,i = 1,

2. limiting the off-diagonal elements so that, for i 6= j,

ki,j = Limit(gi,j , µ0) =

 gi,j if |gi,j | ≤ µ0

sgn(gi,j)µ0 if |gi,j | > µ0

(9)

• Projection onto the spectral constraint set and factorization. The projec-

tion F = PF (G) and subsequent factorisation are obtained by:

1. calculating the eigenvalue decomposition (evd) G = QΛQT ,

2. thresholding the eigenvalues by keeping only the N largest positive

ones.

[Thresh(Λ, N)]i,i =

 λi,i if i ≤ N and λi,i > 0

0 if i > N or λi,i ≤ 0

where the eigenvalues in Λ are ordered from the largest to the small-

est. Following this step, at most N eigenvalues of the Gram matrix

are different from zero,

3. factorizing the projected Gram matrix into the product G = ΦTΦ

by setting:

Φ = Λ̃1/2QT (10)

where Λ̃ ∈ RN×K is the eigenvalues matrix restricted to the first N

rows.

• Dictionary rotation. Rotate the dictionary Φ to align it to the training
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set by solving the problem:

W ? = arg min
WWT=I

||X −WΦA||F . (11)

The optimal rotation matrix can be calculated by:

1. computing the sample covariance between the observed signals and

their approximations C def
= (ΦA)XT ,

2. calculating the svd of the covariance C = UΣV T ,

3. setting the optimal rotation matrix to W ? = V UT ,

4. rotating the dictionary Φ←W ?Φ.

More details about the ipr algorithm can be found in [12], including details

of its computational cost.

3 Learning Incoherent Subspaces

The ipr algorithm learns a dictionary where all the atoms are mutually inco-

herent. Therefore, given any two disjoint sets Λ
⋂

Γ = ∅ that identify non-

overlapping collections of atoms, the sub-dictionaries ΦΛ,ΦΓ are also mutually

incoherent.

Starting from this observation, the main intuition driving the development of

a supervised ipr (s-ipr) algorithm for classification is to learn mutually incoher-

ent sub-dictionaries that approximate features from different classes of signals.

The sub-dictionaries are in turn used to define incoherent sub-spaces, and fea-

tures are projected onto these sub-spaces yielding discriminative dimensionality

reduction.
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3.1 The supervised ipr algorithm

Let {cm ∈ C}Mm=1 , C = {C1, C2, . . . , CP } be a set of labels that identify the

class of the vectors of features xm, whose elements belong to a set C of P

possible classes. The columns of the matrixXp contain a selection of the features

extracted from signals belonging to the p-th class.

To learn incoherent sub-dictionaries from the entire set of features, we must

first cluster the atoms to different classes2, and then only proceed with their

de-correlation if they are assigned to different classes (while allowing coherent

atoms to approximate features from the same class). To this aim, we employ

the matrix A to measure the contribution of every atom to the approximation

of features belonging to each class.

Let αkp indicate the k-th row of the matrix Ap containing the coefficients

that contribute to the approximation of Xp, and Np indicate the number of

signals belonging to the p-th class. A coefficient γk,p is defined as:

γk,p
def
=

1

Np

∣∣∣∣αkp∣∣∣∣1 , (12)

and every atom φk is associated with the class to which it maximally contributes

p?k = arg max
p

{γk,p}. Figure 1 depicts the structure of the matrices involved in

Equation (8), highlighting the vector used to calculate the coefficients γk,p.

Grouping together atoms that have been assigned to the same class leads to

a set of sub-dictionaries whose size and rank depends on the number of atoms

for each class, and to their linear dependence. As a general heuristic, if features

corresponding to different classes do not occupy the same sub-space (according

to the active elements in A), a full-rank dictionary Φ with K ≥ N � P ensures

that p?k identify P non-empty and disjoint sub-dictionaries {Φp}Pp=1.

2Note that the term cluster implies that a this stage the algorithm needs to make an
unsupervised decision, since there is no any a-priori reason to assign a given atom to any
particular class.

12



Xp
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↵k

↵k
p

u

Figure 1: Sketch of the matrix factorisation introduced in Equation (8). The
features Xp belonging to class p are approximated using the coefficients Ap.
The vector αkp contains the coefficients that determine the contribution of the
atom φk to the approximation of features belonging to the p-th class.

Once the atoms have been clustered, the Gram matrixG is computed and it-

eratively projected as in the method described in Section 2.2, with the difference

that equation (9) is modified in order to only constrain the mutual coherence

between atoms assigned to different classes

Limit(gi,j , µ0,p
?) =

 gi,j if |gi,j | ≤ µ0 or p?i = p?j

sgn(gi,j)µ0 if |gi,j | > µ0 and p?i 6= p?j

(13)

A further modification of the standard ipr algorithm presented in [12] con-

sists in the update of the Gram matrix, performed by computing its element-wise

average with the projection K = PKµ0 (G) (rather than by using the projection

alone). This heuristic has led to improved empirical results by preventing G

from changing too abruptly.

The complete supervised s-ipr method is summarised in Algorithm 1. Note

that the mutual coherence µp?(Φ) = arg max
p?i 6=p?j

〈φi,φj〉 indicated in this algorithm

measures the inner product between any two atoms assigned to different classes

since atoms assigned to the same class are allowed to be mutually coherent.

3.2 Classification via incoherent subspaces

The s-ipr algorithm allows to learn a set of sub-dictionaries {Φp} that contain

mutually incoherent atoms. These cannot be directly used to define discrimina-

tive subspaces because, depending on N and on the rank of each sub-dictionary,
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Algorithm 1: Supervised ipr
Input: X,Φ,A, µ0, c, I
Output: Φ?

1 i← 1;
// Cluster atoms

2 Ap ← [αj ]∀j ∈ Cp;
3 γk,p ←

∣∣∣∣αkp∣∣∣∣1 /Np;
4 p?k = arg max

p
{γk,p};

5 while i ≤ I and µp?(Φ) > µ0 do
// Calculate Gram matrix

6 G← ΦTΦ;
// Project onto structural c.s.

7 diag(K)← 1;
8 K ← Limit(G, µ0,p

?);
9 G← 1

2G+ 1
2K;

// Project onto spectral c.s. and factorize
10 [Q,Λ]← evd(G);
11 Λ← Thresh(Λ, N);
12 Φ← Λ1/2QT ;

// Rotate dictionary
13 C ←X(ΦA)

T ;
14 [U ,Σ,V ]← svd(C);
15 W ← V UT ;
16 Φ←WΦ;
17 i← i+ 1;
18 end

atoms belonging to disjoint sub-dictionaries might span identical subspaces. In-

stead, we fix a rank Q ≤ bN/P c (i.e., the integer part of the ratio N/P) and

choose a collection of Q linearly independent atoms from each sub-dictionary

Φp, using the largest values of γk,p to define a picking order. Thus, we obtain

a set {Ψp}Pp=1 of incoherent sub-spaces of rank Q embedded in the space RN ,

and use them to derive a feature transform for classification.

Each feature vector xm that belongs to the class cm is projected onto the

relative subspace, yielding a set of transformed features {ym}Mm=1.

ym = ΨcmΨ†cmxm (14)
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where Ψ† denotes the Moore-Penrose pseudo-inverse of the matrix Ψ and needs

to be used in place of the transposition operator because the columns of Ψ are

in general not orthogonal.

When an unlabelled signal is presented to the classifier, the corresponding

vector of features x is projected onto all the learned sub-spaces. Then, the

nearest sub-space is chosen using an Euclidean distance measure, and the cor-

responding projection y used as the transformed feature.

p? = arg min
p

∣∣∣∣x−ΨpΨ
†
px
∣∣∣∣

2
(15)

y = Ψp?Ψ
†
p?x (16)

The subspace p? can be directly used as an estimator of the class of the signal

c?. Alternatively, a simple k-neaerst neighbour classifier can be employed on the

transformed features, and a class can be inferred as:

c? = knn(y,Y , c) (17)

where Y represents the matrix of training features after the transform stage.

This latter approach is especially suitable when working with a large number of

classes in a space of relatively small dimension, as in this case multiple classes

might be assigned to the same subspace.

4 Numerical Experiments

4.1 Feature visualisation

To illustrate the s-ipr algorithm for feature transform, we first run visualisation

experiments depicting how different feature transform methods act on training
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Figure 2: Synthetic data generated along one-dimensional subspaces of R2.

and test data3.

4.1.1 Synthetic data

Figure 2 displays a total of 1500 synthetic features in R2 belonging to 3 different

classes that we generated for this experiment. For each class, first we draw

values distributed uniformly in the interval [−1, 1] and assign them to the first

component of the features (the x coordinate). Then, we add Gaussian noise

with variance 0.1 to the second component (the y coordinate), and we rotate

the resulting data by the angles θ0 = 0, θ1 = π/4 and θ3 = π/2 for the 3 classes

respectively. This way, features belonging to different classes are clustered along

different one-dimensional sub-spaces of R2.

Figure 3 displays the result of the application of feature transforms to the

data depicted in Figure 2 using subspaces of dimension 1 (with the exception of

lda that projects the data onto a space of dimension P−1 = 2). To generate the

plots, we divided the data into a training set (displayed using the ‘+’ marker)

and a test set (displayed using the ‘o’ marker). Samples were drawn in random
3The Matlab code used to generate the results in this Section is available from

https://github.com/danieleb/2014-SJSPS
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Figure 3: Feature transform applied to the synthetic data in Figure 2. Different
colours correspond to different classes, ‘+’ and ‘o’ markers represent samples
taken from the training and test set respectively.
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order from the dataset and assigned to either the training set or the test set,

with the former containing 70% of the total data and the latter containing the

remaining 30%. Then, we applied feature transforms on the training set, thereby

learning the transform operators, and applied them to the test set.

Starting from the top-left plot, we can observe that PCA identified the direc-

tion x = y as the one-dimensional subspace that contains most of the variance

of the training set. However, given the type of dataset and the dimensionality

reduction caused by pca, features from all classes are overlapping, making this

transform a poor choice for classification. Similar observations can be drawn

from analysing the result of s-pca, although this transform identifies the direc-

tion y = 0 as the one that leads to statistical dependence between the value of

the transformed features in the training set and the relative class. lda does not

introduce any dimensionality reduction in this case, as it projects the features

onto a space of dimension P − 1 = 2, leaving the original features unaltered.

However, in the lda plot we can appreciate the separation between training set

and test set that is difficult to notice in the other plots.

Finally, the plot at the right-bottom corner of Figure 3 displays the results of

the s-ipr algorithm. In setting the parameters of s-ipr, we chose a 2 times over-

complete dictionary, a number of active atoms equal to half the dimension of the

data, and minimal mutual coherence. In the case considered here, this means

K = 4, S = 1 and µ =
√

(K −N)/N(K − 1) ≈ 0.33. As discussed in Section

3.1, s-ipr does not project whole sets of features onto a unique sub-space, but

rather learns one sub-space for each class, and projects features onto the nearest

sub-space. The result depicted here shows that three directions were identified

containing data from mostly one class each. Since the incoherent dictionary

learning is designed to learn atoms with minimal mutual coherence, the angles

between the directions of the sub-spaces learned by s-ipr are approximately
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Figure 4: First three features of the ‘iris’ dataset depicting measurements of
sepal length, sepal width and petal length of three iris species.

equal. Prior information regarding the directions of the data would allow to

relax the parameter µ, and track more closely the directions of the three data

classes.

4.1.2 Iris dataset

Figure 4 displays a subset of the ‘iris’ dataset, a popular database that has

been used extensively to test and benchmark classification algorithms. The

original dataset contains measurements of the sepal length, sepal width, petal

length and petal width of three species of iris, namely ‘setosa’, ‘versicolor’ and

‘virginica’. In this visualisation experiment we selected the first 3 features to be

able to depict the data using three dimensional scatter plots. From observing

the distribution of the data in the feature space, we see that ‘setosa’ is relatively

separated from the other two classes, while the features relative to ‘virginica’

and ‘versicolor’ substantially overlap, with only a few exemplars of ‘virginica’

being distinguishable due to large sepal length and petal length.

The results of feature transforms are depicted in Figure 5. This time, we
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Figure 5: Feature transform applied to the iris data in Figure 4. Different
colours correspond to different classes, ‘+’ and ‘o’ markers represent samples
taken from the training and test set respectively.
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Name N P M
Iris 4 3 150
Balance 4 3 625
Parkinsons 23 2 197
Sonar 60 2 208
USPS 256 3 1405

Table 1: Dataset used in the classification evaluation of feature
transform algorithms. All the datasets can be downloaded from
http://archive.ics.uci.edu/ml/datasets.html. Note that we only use a subset
of the USPS dataset containing the digits 1, 3 and 8.

learn 2 dimensional subspaces from the 3 dimensional data points and plot the

transformed features, along with the learned planes. We observe that pca iden-

tifies a direction along a diagonal axis that follows the distribution of features

displayed in Figure 4. s-pca , on the other hand, projects the features onto a

horizontal plane that slightly enhances the separation between ‘versicolor’ and

‘virginica’ samples. lda results in a projection where features belonging to

the same class are closely clustered together, but fails to separate the classes

‘versicolor’ and ‘virginica’. Finally, the output of s-ipr displays three distinct

sub-spaces associated with the three classes. As in the other plots, the sepa-

ration between ‘versicolor’ and ‘virginica’ is far from perfect, however features

from the two classes are mostly projected onto the respective sub-spaces. Fea-

tures belonging to the ‘setosa’ class are mostly clustered together as a result of

their projection onto the black subspace, however we can note a few test samples

that have been associated by the algorithm to the blue sub-space.

4.2 Classification

In the previous section, we have illustrated how the s-ipr algorithm is able to

learn incoherent sub-spaces that model the distribution of features belonging to

different classes. Here we evaluate s-ipr and the other feature transform algo-

rithms in the context of supervised classification. To perform the classification,
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features are transformed using the methods already used for comparison in Sec-

tion 4.1 by learning a transform operator on the training set and applying it to

the test set. We use a 5-fold stratified cross-validation to classify all the features

in a dataset during the test stage. This method produces 5 independent classi-

fication problems with a ratio between the number of training and test samples

equal to 8 : 2. Once the features have been transformed, a k-nearest neighbour

classifier with k = 5 is used to estimate a class.

We employ the datasets detailed in Table 1, and for each of them we evaluate

the misclassification ratio, that is defined as the fraction of misclassified samples

as a proportion of the total number of samples in the test set, averaged over the

5 independent classification problems created by the stratified cross-validation

protocol.

Figure 6 displays for each dataset the misclassification ratio as a function

of the rank of the subspace learned by the algorithms. In the plots ‘none’

indicates that no feature transform was applied (hence resulting in a sub-space

rank equal to the dimension of the original features). In general we can see that

s-ipr does not perform as well as the other techniques, and is only comparable

at high ranks that do not achieve an overall better classification ratio. Starting

from the ‘iris’ dataset, lda achieves the best performance followed by one-

dimensional subspaces learned using pca. Both s-pca and s-ipr work better

when learning subspaces of high rank. Note that, at rank N = 4 all the methods

are equivalent because they are not performing dimensionality reduction. The

results relative to the balance dataset are similar, with again lda achieving the

best misclassification ratio. Although the results on the ‘Parkinsons’ and ‘sonar’

datasets present similar trends regarding s-ipr, here lda does not prove to be

as successful as pca and s-pca in separating features belonging to different

classes. Finally, for the ‘USPS’ digits dataset, it appears that a low-rank pca

22



1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Sub−space rank

m
is

c
la

s
s
if
ic

a
ti
o

n
 r

a
ti
o

Classification of FisherIris dataset

 

 

chance level none

LDA

PCA

S−PCA

S−IPR

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sub−space rank

m
is

c
la

s
s
if
ic

a
ti
o

n
 r

a
ti
o

Classification of Balance dataset

 

 

chance level

none

LDA

PCA

S−PCA

S−IPR

1 2 3 4 5 6 7 8 9 10111213141516171819202122
0

0.1

0.2

0.3

0.4

0.5

Sub−space rank

m
is

c
la

s
s
if
ic

a
ti
o
n
 r

a
ti
o

Classification of Parkinsons dataset

 

 

chance level none

LDA

PCA

S−PCA

S−IPR

23



1 4 7 10 13 1618 21 24 27 3032 35 38 41 4446 49 52 55 5860
0

0.1

0.2

0.3

0.4

0.5

0.6

Sub−space rank

m
is

c
la

s
s
if
ic

a
ti
o

n
 r

a
ti
o

Classification of Sonar dataset

 

 

chance level
none

LDA

PCA

S−PCA

S−IPR

1 15 28 42 55 69 82 95109122136149163176189203216230243256
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Sub−space rank

m
is

c
la

s
s
if
ic

a
ti
o
n
 r

a
ti
o

Classification of USPS dataset

 

 

chance level

none

LDA

PCA

S−PCA

S−IPR

Figure 6: Misclassification ratio as a function of the rank of the subspace
employed during feature transforms for the datasets ‘iris’,‘balance’,‘Parkinsons’,
‘sonar’ and ‘USPS’.
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is sufficient to reach the best classification performance.

5 Conclusion

5.1 Summary

We have presented the s-ipr algorithm for learning incoherent subspaces from

data belonging to different classes. The encouraging experimental results ob-

tained on the visualisation of the synthetic dataset and of a subset of features

taken from the ’iris‘ dataset motivated us to test s-ipr as a general method for

feature transform to be used in classification problems. Unfortunately, we found

that the performance of our proposed method on a group of datasets commonly

used to benchmark classification algorithms is only competitive compared to

traditional and state-of-the-art methods for feature transform at high sub-space

ranks.

The negative results presented in Section 4.2 do not imply that s-ipr is

completely unsuitable as a tool for modelling data for classification, but they

rather open a few important areas of future research that should be investigated

to better understand the strengths and limitations of the proposed method.

5.2 Future work

The main assumption made when using incoherent dictionary learning for clas-

sification is that high dimensional features are arranged onto lower-dimensional

sub-spaces, and that features belonging to different classes can be modelled us-

ing different subspaces that are mutually incoherent. This assumption might

be met by some datasets, but might not generally be satisfied by others. Un-

derstanding the general distribution of the features in a dataset might be a

necessary first step to inform a subsequent choice of algorithm, so that s-ipr
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can be used in cases where its premise about the feature distribution is valid.

This same argument holds for the whole class of linear models that comprises

the dictionary learning model. Indeed, many feature transform techniques have

equivalent kernelized versions to model non-linear data.

Other substantial improvements can be made on the algorithm itself. The

present implementation of s-ipr contains a fixed parameter µ that promotes

minimal mutual coherence between the sub-spaces used to approximate differ-

ent data classes. Knowledge about the distribution of the features might lead to

relaxing this parameter, learning sub-spaces that are closer to the true distribu-

tion of the features and in turn improving class separation. Moreover, different

values of mutual coherence for different pairs of subspaces can be easily included

in the optimisation, greatly enhancing the flexibility of s-ipr as a modelling tool.
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