947 research outputs found
Intercommutation of Semilocal Strings and Skyrmions
We study the intercommuting of semilocal strings and Skyrmions, for a wide
range of internal parameters, velocities and intersection angles by numerically
evolving the equations of motion. We find that the collisions of strings and
strings, strings and Skyrmions, and Skyrmions and Skyrmions, all lead to
intercommuting for a wide range of parameters. Even the collisions of unstable
Skyrmions and strings leads to intercommuting, demonstrating that the
phenomenon of intercommuting is very robust, extending to dissimilar field
configurations that are not stationary solutions. Even more remarkably, at
least for the semilocal U(2) formulation considered here, all intercommutations
trigger a reversion to U(1) Nielsen-Olesen strings.Comment: 4 pages, 4 figures. Fixed typos, added reference
Josephson Vortex States in Intermediate Fields
Motivated by recent resistance data in high superconductors in fields
{\it parallel} to the CuO layers, we address two issues on the Josephson-vortex
phase diagram, the appearances of structural transitions on the observed first
order transition (FOT) curve in intermediate fields and of a lower critical
point of the FOT line. It is found that some rotated pinned solids are more
stable than the ordinary rhombic pinned solids with vacant interlayer spacings
and that, due to the vertical portion in higher fields of the FOT line, the FOT
tends to be destroyed by creating a lower critical point.Comment: 12 pages, 3 figures. To appear in J.Phys.Soc.Jpn. 71, No.2 (February,
2002
Defect formation and local gauge invariance
We propose a new mechanism for formation of topological defects in a U(1)
model with a local gauge symmetry. This mechanism leads to definite
predictions, which are qualitatively different from those of the Kibble-Zurek
mechanism of global theories. We confirm these predictions in numerical
simulations, and they can also be tested in superconductor experiments. We
believe that the mechanism generalizes to more complicated theories.Comment: REVTeX, 4 pages, 2 figures. The explicit form of the Hamiltonian and
the equations of motion added. To appear in PRL (http://prl.aps.org/
A Wormhole at the core of an infinite cosmic string
We study a solution of Einstein's equations that describes a straight cosmic
string with a variable angular deficit, starting with a deficit at the
core. We show that the coordinate singularity associated to this defect can be
interpreted as a traversible wormhole lodging at the the core of the string. A
negative energy density gradually decreases the angular deficit as the distance
from the core increases, ending, at radial infinity, in a Minkowski spacetime.
The negative energy density can be confined to a small transversal section of
the string by gluing to it an exterior Gott's like solution, that freezes the
angular deficit existing at the matching border. The equation of state of the
string is such that any massive particle may stay at rest anywhere in this
spacetime. In this sense this is 2+1 spacetime solution.Comment: 1 tex file and 5 eps files. To be Published in Nov. in Phys.Rev.
Tailoring the microstructure of a solid oxide fuel cell anode support by calcination and milling of YSZ
In this study, the effects of calcination and milling of 8YSZ (8 mol% yttria stabilized zirconia) used in the nickel-YSZ anode on the performance of anode supported tubular fuel cells were investigated. For this purpose, two different types of cells were prepared based on a Ni-YSZ/YSZ/NdNiO-YSZ configuration. For the anode preparation, a suspension was prepared by mixing NiO and YSZ in a ratio of 65:35 wt% (Ni:YSZ 50:50 vol.%) with 30 vol.% graphite as the pore former. As received Tosoh YSZ or its calcined form (heated at 1500 °C for 3 hours) was used in the anode support as the YSZ source. Electrochemical results showed that optimization of the fuel electrode microstructure is essential for the optimal distribution of gas within the support of the cell, especially under electrolysis operation where the performance for an optimized cell (calcined YSZ) was enhanced by a factor of two. In comparison with a standard cell (containing as received YSZ), at 1.5 V and 800 °C the measured current density was -1380 mA cm and -690 mA cm for the cells containing calcined and as received YSZ, respectively. The present study suggests that the anode porosity for improved cell performance under SOEC is more critical than SOFC mode due to more complex gas diffusion under electrolysis mode where large amount of steam needs to be transfered into the cell.The authors would like to acknowledge the Climate Change and Emissions Management Corporation (CCEMC) of Canada and Fundacion Domingo Martinez and Ministerio de Economia y Competitividad (grant no. MAT2015-68078-R) of Spain for funding this research.Peer Reviewe
Winding up by a quench: vortices in the wake of rapid Bose-Einstein condensation
A second order phase transition induced by a rapid quench can lock out
topological defects with densities far exceeding their equilibrium expectation
values. We use quantum kinetic theory to show that this mechanism, originally
postulated in the cosmological context, and analysed so far only on the mean
field classical level, should allow spontaneous generation of vortex lines in
trapped Bose-Einstein condensates of simple topology, or of winding number in
toroidal condensates.Comment: 4 pages, 2 figures; misprint correcte
Properties of Accretion Flows Around Coalescing Supermassive Black Holes
What are the properties of accretion flows in the vicinity of coalescing
supermassive black holes (SBHs)? The answer to this question has direct
implications for the feasibility of coincident detections of electromagnetic
(EM) and gravitational wave (GW) signals from coalescences. Such detections are
considered to be the next observational grand challenge that will enable
testing general relativity in the strong, nonlinear regime and improve our
understanding of evolution and growth of these massive compact objects. In this
paper we review the properties of the environment of coalescing binaries in the
context of the circumbinary disk and hot, radiatively inefficient accretion
flow models and use them to mark the extent of the parameter space spanned by
this problem. We report the results from an ongoing, general relativistic,
hydrodynamical study of the inspiral and merger of black holes, motivated by
the latter scenario. We find that correlated EM+GW oscillations can arise
during the inspiral phase followed by the gradual rise and subsequent drop-off
in the light curve at the time of coalescence. While there are indications that
the latter EM signature is a more robust one, a detection of either signal
coincidentally with GWs would be a convincing evidence for an impending SBH
binary coalescence. The observability of an EM counterpart in the hot accretion
flow scenario depends on the details of a model. In the case of the most
massive binaries observable by the Laser Interferometer Space Antenna, upper
limits on luminosity imply that they may be identified by EM searches out to
z~0.1-1. However, given the radiatively inefficient nature of the gas flow, we
speculate that a majority of massive binaries may appear as low luminosity AGN
in the local universe.Comment: Revised version accepted to Class. Quantum Grav. for proceedings of
8th LISA Symposium. 15 pages, 3 figures, includes changes suggested in
referee report
Influência do genótipo sobre a produção e a composição do leite de cabras mestiças.
Resumo: O experimento foi conduzido na EMBRAPA Caprinos e objetivou determinar o potencial de produção e a composição do leite de cabras mestiças. Foram utilizadas 35 cabras, sendo doze ½ Alpina + ½ Moxotó (½ A-M), onze ¾ Alpina + ¼ Moxotó (¾ A-M) e doze "tricross" (½ Anglo-nubiana + ¼ Alpina + ½ Moxotó). O período de lactação foi de 147 dias. As cabras eram ordenhadas duas vezes ao dia e o controle leiteiro realizado semanalmente. Os animais receberam dieta para produção de 2,5 kg de leite/dia. A produção de leite, como coletada, não foi influenciada (P>0,05) pelo genótipo. No entanto, quando esta foi corrigida para 4% de gordura, o genótipo ½ A-M foi superior (P0,05). However, when milk production was adjusted for 4% of fat, the genotype ½ Alpina + ½ Moxotó was superior to the others (P<0,05). There was no difference among genotypes for milk fat, milk protein content and total milk solids
Hamiltonian Relaxation
Due to the complexity of the required numerical codes, many of the new
formulations for the evolution of the gravitational fields in numerical
relativity are not tested on binary evolutions. We introduce in this paper a
new testing ground for numerical methods based on the simulation of binary
neutron stars. This numerical setup is used to develop a new technique, the
Hamiltonian relaxation (HR), that is benchmarked against the currently most
stable simulations based on the BSSN method. We show that, while the length of
the HR run is somewhat shorter than the equivalent BSSN simulation, the HR
technique improves the overall quality of the simulation, not only regarding
the satisfaction of the Hamiltonian constraint, but also the behavior of the
total angular momentum of the binary. The latest quantity agrees well with
post-Newtonian estimations for point-mass binaries in circular orbits.Comment: More detailed description of the numerical implementation added and
some typos corrected. Version accepted for publication in Class. and Quantum
Gravit
Gauge Invariant Hamiltonian Formalism for Spherically Symmetric Gravitating Shells
The dynamics of a spherically symmetric thin shell with arbitrary rest mass
and surface tension interacting with a central black hole is studied. A careful
investigation of all classical solutions reveals that the value of the radius
of the shell and of the radial velocity as an initial datum does not determine
the motion of the shell; another configuration space must, therefore, be found.
A different problem is that the shell Hamiltonians used in literature are
complicated functions of momenta (non-local) and they are gauge dependent. To
solve these problems, the existence is proved of a gauge invariant
super-Hamiltonian that is quadratic in momenta and that generates the shell
equations of motion. The true Hamiltonians are shown to follow from the
super-Hamiltonian by a reduction procedure including a choice of gauge and
solution of constraint; one important step in the proof is a lemma stating that
the true Hamiltonians are uniquely determined (up to a canonical
transformation) by the equations of motion of the shell, the value of the total
energy of the system, and the choice of time coordinate along the shell. As an
example, the Kraus-Wilczek Hamiltonian is rederived from the super-Hamiltonian.
The super-Hamiltonian coincides with that of a fictitious particle moving in a
fixed two-dimensional Kruskal spacetime under the influence of two effective
potentials. The pair consisting of a point of this spacetime and a unit
timelike vector at the point, considered as an initial datum, determines a
unique motion of the shell.Comment: Some remarks on the singularity of the vector potantial are added and
some minor corrections done. Definitive version accepted in Phys. Re
- …