25,954 research outputs found
Fluctuations and correlations in population models with age structure
We study the population profile in a simple discrete time model of population
dynamics. Our model, which is closely related to certain ``bit-string'' models
of evolution, incorporates competition for resources via a population dependent
death probability, as well as a variable reproduction probability for each
individual as a function of age. We first solve for the steady-state of the
model in mean field theory, before developing analytic techniques to compute
Gaussian fluctuation corrections around the mean field fixed point. Our
computations are found to be in good agreement with Monte-Carlo simulations.
Finally we discuss how similar methods may be applied to fluctuations in
continuous time population models.Comment: 4 page
Rapid Measurement of Quantum Systems using Feedback Control
We introduce a feedback control algorithm that increases the speed at which a
measurement extracts information about a -dimensional system by a factor
that scales as . Generalizing this algorithm, we apply it to a register of
qubits and show an improvement O(n). We derive analytical bounds on the
benefit provided by the feedback and perform simulations that confirm that this
speedup is achieved.Comment: 4 pages, 4 figures. V2: Minor correction
First Results from the Transit Ephemeris Refinement and Monitoring Survey (TERMS)
Transiting planet discoveries have yielded a plethora of information towards understanding the structure and atmospheres of extra-solar planets. These discoveries have been restricted to the short-period or low-periastron distance regimes due to the bias inherent in the geometric transit probability. Through the refinement of planetary orbital parmaters, and hence reducing the size of transit windows, long-period planets become feasible targets for photometric follow-up. Here we describe the TERMS project which is monitoring these host stars at predicted transit times
On the push&pull protocol for rumour spreading
The asynchronous push&pull protocol, a randomized distributed algorithm for
spreading a rumour in a graph , works as follows. Independent Poisson clocks
of rate 1 are associated with the vertices of . Initially, one vertex of
knows the rumour. Whenever the clock of a vertex rings, it calls a random
neighbour : if knows the rumour and does not, then tells the
rumour (a push operation), and if does not know the rumour and knows
it, tells the rumour (a pull operation). The average spread time of
is the expected time it takes for all vertices to know the rumour, and the
guaranteed spread time of is the smallest time such that with
probability at least , after time all vertices know the rumour. The
synchronous variant of this protocol, in which each clock rings precisely at
times , has been studied extensively. We prove the following results
for any -vertex graph: In either version, the average spread time is at most
linear even if only the pull operation is used, and the guaranteed spread time
is within a logarithmic factor of the average spread time, so it is . In the asynchronous version, both the average and guaranteed spread times
are . We give examples of graphs illustrating that these bounds
are best possible up to constant factors. We also prove theoretical
relationships between the guaranteed spread times in the two versions. Firstly,
in all graphs the guaranteed spread time in the asynchronous version is within
an factor of that in the synchronous version, and this is tight.
Next, we find examples of graphs whose asynchronous spread times are
logarithmic, but the synchronous versions are polynomially large. Finally, we
show for any graph that the ratio of the synchronous spread time to the
asynchronous spread time is .Comment: 25 page
Recommended from our members
Correlated modal mineralogy, aqueous alteration and oxygen isotope composition of CM Chondrites
In this study we move beyond defining alteration sequences in CM chondrites towards understanding the relationship between modal mineralogy, the extent of aqueous alteration and O-isotope compositions
Associations between coronal mass ejections and interplanetary shocks
Nearly continuous complementary coronal observations and interplanetary plasma measurements for the years 1979-1982 are compared. It is shown that almost all low latitude high speed coronal mass ejections (CME's) were associated with shocks at HELIOS 1. Some suitably directed low speed CME's were clearly associated with shocks while others may have been associated with disturbed plasma (such as NCDE's) without shocks. A few opposite hemisphere CME's associated with great flares seem to be associated with shocks at HELIOS
The Relationship of Coronal Mass Ejections to Streamers
We have examined images from the Large Angle Spectroscopic Coronagraph
(LASCO) to study the relationship of Coronal Mass Ejections (CMEs) to coronal
streamers. We wish to test the suggestion (Low 1996) that CMEs arise from flux
ropes embedded in a streamer erupting, thus disrupting the streamer. The data
span a period of two years near sunspot minimum through a period of increased
activity as sunspot numbers increased. We have used LASCO data from the C2
coronagraph which records Thomson scattered white light from coronal electrons
at heights between 1.5 and 6R_sun. Maps of the coronal streamers have been
constructed from LASCO C2 observations at a height of 2.5R_sun at the east and
west limbs. We have superposed the corresponding positions of CMEs observed
with the C2 coronagraph onto the synoptic maps. We identified the different
kinds of signatures CMEs leave on the streamer structure at this height
(2.5R_sun). We find four types of CMEs with respect to their effect on
streamers:
1. CMEs that disrupt the streamer 2. CMEs that have no effect on the
streamer, even though they are related to it. 3. CMEs that create streamer-like
structures 4. CMEs that are latitudinally displaced from the streamer.
This is the most extensive observational study of the relation between CMEs
and streamers to date. Previous studies using SMM data have made the general
statement that CMEs are mostly associated with streamers, and that they
frequently disrupt it. However, we find that approximately 35% of the observed
CMEs bear no relation to the pre-existing streamer, while 46% have no effect on
the observed streamer, even though they appear to be related to it. Our
conclusions thus differ considerably from those of previous studies.Comment: Accepted, Journal of Geophysical Research. 8 figs, better versions at
http://www.science.gmu.edu/~prasads/streamer.htm
The unreasonable effectiveness of equilibrium-like theory for interpreting non-equilibrium experiments
There has been great interest in applying the results of statistical
mechanics to single molecule experiements. Recent work has highlighted
so-called non-equilibrium work-energy relations and Fluctuation Theorems which
take on an equilibrium-like (time independent) form. Here I give a very simple
heuristic example where an equilibrium result (the barometric law for colloidal
particles) arises from theory describing the {\em thermodynamically}
non-equilibrium phenomenon of a single colloidal particle falling through
solution due to gravity. This simple result arises from the fact that the
particle, even while falling, is in {\em mechanical} equilibrium (gravitational
force equal the viscous drag force) at every instant. The results are
generalized by appeal to the central limit theorem. The resulting time
independent equations that hold for thermodynamically non-equilibrium (and even
non-stationary) processes offer great possibilities for rapid determination of
thermodynamic parameters from single molecule experiments.Comment: 6 page
Recommended from our members
Tropical lows in southern Africa: tracks, rainfall contributions and the role of ENSO
Southern African tropical lows are synoptic-scale cyclonic vortices that propagate westward across southern Africa in the Austral summer. They strongly influence local rainfall and aggregate in the climatological DJF mean to form the Angola Low. In this study, tropical lows are identified and tracked using an objective feature tracking method. The statistics of tropical low tracks over southern Africa are presented and compared across three reanalysis products. Findings are compared to the literature of tropical low pressure areas elsewhere in the world, where it is found that most tracking statistics compare well, but that the tendency of tropical lows to become semi-stationary over Angola is unique to Southern southern Africa. The hypothesis that tropical lows in Angola have a causal relationship with Tropical Temperate Troughs is tested, and a correlation between occurrence frequencies is found at inter-annual but not daily time-scales. Precipitation is attributed to the tropical lows and it is found that tropical lows are associated with 31% of rainfall across tropical southern Africa, based on gridded precipitation products. The inter-annual variability of the number of tropical lows that form
34 per year (σ = 6 events/annum) is linked to ENSO and the tropical easterly jet. The mean latitude of tropical lows is shifted northwards during El Nino and southwards during La Nina. Much of the inter-annual precipitation variability maximum in Angola is attributed to rainfall associated with tropical lows. These results provide insights into the southern African response to ENSO and into the mechanisms of rainfall in the southern African tropical edge
- …