1,175 research outputs found
Multicriticality of the (2+1)-dimensional gonihedric model: A realization of the (d,m)=(3,2) Lifshitz point
Multicriticality of the gonihedric model in 2+1 dimensions is investigated
numerically. The gonihedric model is a fully frustrated Ising magnet with the
finely tuned plaquette-type (four-body and plaquette-diagonal) interactions,
which cancel out the domain-wall surface tension. Because the
quantum-mechanical fluctuation along the imaginary-time direction is simply
ferromagnetic, the criticality of the (2+1)-dimensional gonihedric model should
be an anisotropic one; that is, the respective critical indices of real-space
(\perp) and imaginary-time (\parallel) sectors do not coincide. Extending the
parameter space to control the domain-wall surface tension, we analyze the
criticality in terms of the crossover (multicritical) scaling theory. By means
of the numerical diagonalization for the clusters with N\le 28 spins, we
obtained the correlation-length critical indices
(\nu_\perp,\nu_\parallel)=(0.45(10),1.04(27)), and the crossover exponent
\phi=0.7(2). Our results are comparable to
(\nu_{\perp},\nu_{\parallel})=(0.482,1.230), and \phi=0.688 obtained by Diehl
and Shpot for the (d,m)=(3,2) Lifshitz point with the \epsilon-expansion method
up to O(\epsilon^2)
Recommended from our members
Monolayer/Bilayer Transition in Langmuir Films of Derivatized Gold Nanoparticles at the Gas/Water Interface: An X-Ray Scattering Study
The microscopic structure of Langmuir films of derivatized gold nanoparticles has been studied as a function of area/particle on the water surface. The molecules (AuSHDA) consist of gold particles of mean core diameter D ∼ 22 Å that have been stabilized by attachment of carboxylic acid terminated alkylthiols, HS–(CH2)15–COOH. Compression of the film results in a broad plateau of finite pressure in the surface pressure versus area/particle isotherm that is consistent with a first-order monolayer/bilayer transition. X-ray specular reflectivity (XR) and grazing incidence diffraction show that when first spread at large area/particle, AuSHDA particles aggregate two dimensionally to form hexagonally packed monolayer domains at a nearest-neighbor distance of a = 34 Å. The lateral positional correlations associated with the two-dimensional (2D) hexagonal order are of short range and extend over only a few interparticle distances; this appears to be a result of the polydispersity in particle size. Subsequent compression of the film increases the surface coverage by the monolayer but has little effect on the interparticle distance in the close-packed domains. The XR and off-specular diffuse scattering (XOSDS) results near the onset of the monolayer/bilayer coexistence plateau are consistent with complete surface coverage by a laterally homogeneous monolayer of AuSHDA particles. On the high-density side of the plateau, the electron-density profile extracted from XR clearly shows the formation of a bilayer in which the newly formed second layer on top is slightly less dense than the first layer. In contrast to the case of the homogeneous monolayer, the XOSDS intensities observed from the bilayer are higher than the prediction based on the capillary wave model and the assumption of homogeneity, indicating the presence of lateral density inhomogeneities in the bilayer. According to the results of Bragg rod measurements, the 2D hexagonal order in the two layers of the bilayer are only partially correlated.Engineering and Applied Science
Effects of exenatide twice daily versus sitagliptin on 24-h glucose, glucoregulatory and hormonal measures: a randomized, double-blind, crossover study
Aim: To compare exenatide and sitagliptin glucose and glucoregulatory measures in subjects with type 2 diabetes
Direct Observation of Field-Induced Incommensurate Fluctuations in a One-Dimensional S=1/2 Antiferromagnet
Neutron scattering from copper benzoate, Cu(C6D5COO)2 3D2O, provides the
first direct experimental evidence for field-dependent incommensurate low
energy modes in a one-dimensional spin S = 1/2 antiferromagnet. Soft modes
occur for wavevectors q=\pi +- dq(H) where dq(H) ~ 2 \pi M(H)/g\mu_B as
predicted by Bethe ansatz and spinon descriptions of the S = 1/2 chain.
Unexpected was a field-induced energy gap , where
as determined from specific heat measurements. At H = 7 T
(g\mu_B H/J = 0.52), the magnitude of the gap varies from 0.06 - 0.3 J
depending on the orientation of the applied field.Comment: 11 pages, 5 postscript figures, LaTeX, Submitted to PRL 3/31/97,
e-mail comments to [email protected]
Dynamical Structure Factors of the S=1/2 Bond-Alternating Spin Chain with a Next-Nearest-Neighbor Interaction in Magnetic Fields
The dynamical structure factor of the S=1/2 bond-alternating spin chain with
a next-nearest-neighbor interaction in magnetic field is investigated using the
continued fraction method based on the Lanczos algorithm. When the plateau
exists on the magnetization curve, the longitudinal dynamical structure factor
shows a large intensity with a periodic dispersion relation, while the
transverse one shows a large intensity with an almost dispersionless mode. The
periodicity and the amplitude of the dispersion relation in the longitudinal
dynamical structure factor are sensitive to the coupling constants. The
dynamical structure factor of the S=1/2 two-leg ladder in magnetic field is
also calculated in the strong interchain-coupling regime.
The dynamical structure factor shows gapless or gapful behavior depending on
the wave vector along the rung.Comment: 8 pages, 4 figures, to appear in Journal of the Physical Society of
Japan, vol. 69, no. 10, (2000
Rigorous results on superconducting ground states for attractive extended Hubbard models
We show that the exact ground state for a class of extended Hubbard models
including bond-charge, exchange, and pair-hopping terms, is the Yang
"eta-paired" state for any non-vanishing value of the pair-hopping amplitude,
at least when the on-site Coulomb interaction is attractive enough and the
remaining physical parameters satisfy a single constraint. The ground state is
thus rigorously superconducting. Our result holds on a bipartite lattice in any
dimension, at any band filling, and for arbitrary electron hopping.Comment: 12 page
Characterization of the Modular Design of the Autolysin/Adhesin Aaa from Staphylococcus Aureus
BACKGROUND: Staphylococcus aureus is a frequent cause of serious and life-threatening infections, such as endocarditis, osteomyelitis, pneumonia, and sepsis. Its adherence to various host structures is crucial for the establishment of diseases. Adherence may be mediated by a variety of adhesins, among them the autolysin/adhesins Atl and Aaa. Aaa is composed of three N-terminal repeated sequences homologous to a lysin motif (LysM) that can confer cell wall attachment and a C-terminally located cysteine, histidine-dependent amidohydrolase/peptidase (CHAP) domain having bacteriolytic activity in many proteins. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show by surface plasmon resonance that the LysM domain binds to fibrinogen, fibronectin, and vitronectin respresenting a novel adhesive function for this domain. Moreover, we demonstrated that the CHAP domain not only mediates the bacteriolytic activity, but also adherence to fibrinogen, fibronectin, and vitronectin, thus demonstrating for the first time an adhesive function for this domain. Adherence of an S. aureus aaa mutant and the complemented aaa mutant is slightly decreased and increased, respectively, to vitronectin, but not to fibrinogen and fibronectin, which might at least in part result from an increased expression of atl in the aaa mutant. Furthermore, an S. aureus atl mutant that showed enhanced adherence to fibrinogen, fibronectin, and endothelial cells also demonstrated increased aaa expression and production of Aaa. Thus, the redundant functions of Aaa and Atl might at least in part be interchangeable. Lastly, RT-PCR and zymographic analysis revealed that aaa is negatively regulated by the global virulence gene regulators agr and SarA. CONCLUSIONS/SIGNIFICANCE: We identified novel functions for two widely distributed protein domains, LysM and CHAP, i.e. the adherence to the extracellular matrix proteins fibrinogen, fibronectin, and vitronectin. The adhesive properties of Aaa might promote S. aureus colonization of host extracellular matrix and tissue, suggesting a role for Aaa in the pathogenesis of S. aureus infections
Dyck Paths, Motzkin Paths and Traffic Jams
It has recently been observed that the normalization of a one-dimensional
out-of-equilibrium model, the Asymmetric Exclusion Process (ASEP) with random
sequential dynamics, is exactly equivalent to the partition function of a
two-dimensional lattice path model of one-transit walks, or equivalently Dyck
paths. This explains the applicability of the Lee-Yang theory of partition
function zeros to the ASEP normalization.
In this paper we consider the exact solution of the parallel-update ASEP, a
special case of the Nagel-Schreckenberg model for traffic flow, in which the
ASEP phase transitions can be intepreted as jamming transitions, and find that
Lee-Yang theory still applies. We show that the parallel-update ASEP
normalization can be expressed as one of several equivalent two-dimensional
lattice path problems involving weighted Dyck or Motzkin paths. We introduce
the notion of thermodynamic equivalence for such paths and show that the
robustness of the general form of the ASEP phase diagram under various update
dynamics is a consequence of this thermodynamic equivalence.Comment: Version accepted for publicatio
- …