98 research outputs found
Commutator Anomaly in Noncommutative Quantum Mechanics
In this letter, firstly, the Schrdinger equation on noncommutative
phase space is given by using a generalized Bopp's shift. Then the anomaly term
of commutator of arbitrary physical observable operators on noncommutative
phase space is obtained. Finally, the basic uncertainty relations for
space-space and space-momentum as well as momentum-momentum operators in
noncommutative quantum mechanics (NCQM), and uncertainty relation for arbitrary
physical observable operators in NCQM are discussed.Comment: 7 page
Four-Point One-Loop Amplitude Computation in the Pure Spinor Formalism
The massless 4-point one-loop amplitude computation in the pure spinor
formalism is shown to agree with the computation in the RNS formalism.Comment: 10 pages harvmac te
Bosonic Field Propagators on Algebraic Curves
In this paper we investigate massless scalar field theory on non-degenerate
algebraic curves. The propagator is written in terms of the parameters
appearing in the polynomial defining the curve. This provides an alternative to
the language of theta functions. The main result is a derivation of the third
kind differential normalized in such a way that its periods around the homology
cycles are purely imaginary. All the physical correlation functions of the
scalar fields can be expressed in terms of this object. This paper contains a
detailed analysis of the techniques necessary to study field theories on
algebraic curves. A simple expression of the scalar field propagator is found
in a particular case in which the algebraic curves have internal symmetry
and one of the fields is located at a branch point.Comment: 26 pages, TeX + harvma
Hadron-nucleus scattering in the local reggeon model with pomeron loops for realistic nuclei
Contribution of simplest loops for hadron-nucleus scattering cross-sections
is studied in the Local Reggeon Field Theory with a supercritical pomeron. It
is shown that inside the nucleus the supercritical pomeron transforms into a
subcritical one, so that perturbative treatment becomes possible. The pomeron
intercept becomes complex, which leads to oscillations in the cross-sections.Comment: 13 pages, 6 figure
Finite nuclei in the reggeon âtoy modelâ
Hadron-nucleus amplitudes at high energies are studied in the "toy" Regge
model in zero transverse dimension for finite nuclei, when the standard series
of fan diagrams is converted into a finite sum and looses physical sense at
quite low energies. Taking into account all the loop contributions by numerical
methods we find a physically meaningful amplitudes at all energies. They
practically coincide with the amplitudes for infinite nuclei. A surprizing
result is that for finite nuclei and small enough triple pomeron coupling the
infinite series of fan diagrams describes the amplitude quite well in spite of
the fact that in reality the series should be cut and as such deprived of any
physical sense at high energies
Regge Field Theory in zero transverse dimensions: loops versus "net" diagrams
Toy models of interacting Pomerons with triple and quaternary Pomeron
vertices in zero transverse dimension are investigated. Numerical solutions for
eigenvalues and eigenfunctions of the corresponding Hamiltonians are obtained,
providing the quantum solution for the scattering amplitude in both models. The
equations of motion for the Lagrangians of the theories are also considered and
the classical solutions of the equations are found. Full two-point Green
functions ("effective" Pomeron propagator) and amplitude of diffractive
dissociation process are calculated in the framework of RFT-0 approach. The
importance of the loops contribution in the amplitude at different values of
the model parameters is discussed as well as the difference between the models
with and without quaternary Pomeron vertex.Comment: 34 pages, 36 figure
Multiloop Amplitudes and Vanishing Theorems using the Pure Spinor Formalism for the Superstring
A ten-dimensional super-Poincare covariant formalism for the superstring was
recently developed which involves a BRST operator constructed from superspace
matter variables and a pure spinor ghost variable. A super-Poincare covariant
prescription was defined for computing tree amplitudes and was shown to
coincide with the standard RNS prescription.
In this paper, picture-changing operators are used to define functional
integration over the pure spinor ghosts and to construct a suitable ghost.
A super-Poincare covariant prescription is then given for the computation of
N-point multiloop amplitudes. One can easily prove that massless N-point
multiloop amplitudes vanish for N<4, confirming the perturbative finiteness of
superstring theory. One can also prove the Type IIB S-duality conjecture that
terms in the effective action receive no perturbative contributions above
one loop.Comment: 45 pages harvmac tex, added minor clarification
The life and scientific work of William R. Evitt (1923-2009)
Occasionally (and fortunately), circumstances and timing combine to allow an individual, almost singlehandedly, to generate a paradigm shift in his or her chosen field of inquiry. William R. (âBillâ) Evitt (1923-2009) was such a person. During his career as a palaeontologist, Bill Evitt made lasting and profound contributions to the study of both dinoflagellates and trilobites. He had a distinguished, long and varied career, researching first trilobites and techniques in palaeontology before moving on to marine palynomorphs. Bill is undoubtedly best known for his work on dinoflagellates, especially their resting cysts. He worked at three major US universities and spent a highly significant period in the oil industry. Bill's early profound interest in the natural sciences was actively encouraged both by his parents and at school. His alma mater was Johns Hopkins University where, commencing in 1940, he studied chemistry and geology as an undergraduate. He quickly developed a strong vocation in the earth sciences, and became fascinated by the fossiliferous Lower Palaeozoic strata of the northwestern United States. Bill commenced a PhD project on silicified Middle Ordovician trilobites from Virginia in 1943. His doctoral research was interrupted by military service during World War II; Bill served as an aerial photograph interpreter in China in 1944 and 1945, and received the Bronze Star for his excellent work. Upon demobilisation from the US Army Air Force, he resumed work on his PhD and was given significant teaching duties at Johns Hopkins, which he thoroughly enjoyed. He accepted his first professional position, as an instructor in sedimentary geology, at the University of Rochester in late 1948. Here Bill supervised his first two graduate students, and shared a great cameraderie with a highly motivated student body which largely comprised World War II veterans. At Rochester, Bill continued his trilobite research, and was the editor of the Journal of Paleontology between 1953 and 1956. Seeking a new challenge, he joined the Carter Oil Company in Tulsa, Oklahoma, during 1956. This brought about an irrevocable realignment of his research interests from trilobites to marine palynology. He undertook basic research on aquatic palynomorphs in a very well-resourced laboratory under the direction of one of his most influential mentors, William S. âBillâ Hoffmeister. Bill Evitt visited the influential European palynologists Georges Deflandre and Alfred Eisenack during late 1959 and, while in Tulsa, first developed several groundbreaking hypotheses. He soon realised that the distinctive morphology of certain fossil dinoflagellates, notably the archaeopyle, meant that they represent the resting cyst stage of the life cycle. The archaeopyle clearly allows the excystment of the cell contents, and comprises one or more plate areas. Bill also concluded that spine-bearing palynomorphs, then called hystrichospheres, could be divided into two groups. The largely Palaeozoic spine-bearing palynomorphs are of uncertain biological affinity, and these were termed acritarchs. Moreover, he determined that unequivocal dinoflagellate cysts are all Mesozoic or younger, and that the fossil record of dinoflagellates is highly selective. Bill was always an academic at heart and he joined Stanford University in 1962, where he remained until retiring in 1988. Bill enjoyed getting back into teaching after his six years in industry. During his 26-year tenure at Stanford, Bill continued to revolutionise our understanding of dinoflagellate cysts. He produced many highly influential papers and two major textbooks. The highlights include defining the acritarchs and comprehensively documenting the archaeopyle, together with highly detailed work on the morphology of Nannoceratopsis and Palaeoperidinium pyrophorum using the scanning electron microscope. Bill supervised 11 graduate students while at Stanford University. He organised the Penrose Conference on Modern and Fossil Dinoflagellates in 1978, which was so successful that similar meetings have been held about every four years since that inaugural symposium. Bill also taught many short courses on dinoflagellate cysts aimed at the professional community. Unlike many eminent geologists, Bill actually retired from actively working in the earth sciences. His full retirement was in 1988; after this he worked on only a small number of dinoflagellate cyst projects, including an extensive paper on the genus Palaeoperidinium
- âŠ