44 research outputs found

    Structural properties of impact ices accreted on aircraft structures

    Get PDF
    The structural properties of ice accretions formed on aircraft surfaces are studied. The overall objectives are to measure basic structural properties of impact ices and to develop finite element analytical procedures for use in the design of all deicing systems. The Icing Research Tunnel (IRT) was used to produce simulated natural ice accretion over a wide range of icing conditions. Two different test apparatus were used to measure each of the three basic mechanical properties: tensile, shear, and peeling. Data was obtained on both adhesive shear strength of impact ices and peeling forces for various icing conditions. The influences of various icing parameters such as tunnel air temperature and velocity, icing cloud drop size, material substrate, surface temperature at ice/material interface, and ice thickness were studied. A finite element analysis of the shear test apparatus was developed in order to gain more insight in the evaluation of the test data. A comparison with other investigators was made. The result shows that the adhesive shear strength of impact ice typically varies between 40 and 50 psi, with peak strength reaching 120 psi and is not dependent on the kind of substrate used, the thickness of accreted ice, and tunnel temperature below 4 C

    Vibration characteristics of a large wind turbine tower on non-rigid foundations

    Get PDF
    Vibration characteristics of the Mod-OA wind turbine supported by nonrigid foundations were investigated for a range of soil rigidities. The study shows that the influence of foundation rotation on the fundamental frequency of the wind turbine is quite significant for cohesive soils or loose sand. The reduction in natural frequency can be greater than 20 percent. However, for a foundation resting on well graded, dense granular materials or bedrock, such effect is small and the foundation can be treated as a fixed base

    Decoupling of Undamped Vibration Systems

    No full text

    THE BENDING FATIGUE RESPONSE and FATIGUE STRENGTH OF PVC PIPE and PIPE JOINTS

    No full text
    1 Professor (Emeritus) of Mechanical Engineering 2 Professor of Mechanical Engineering The University of Akron, Akron, [email protected] [email protected] In a two-year program, seventy-eight specimens of PVC pipe with and without adhesive socket joints were tested in a fourpoint bending apparatus. Internal pressures were varied from atmospheric pressure (0 psig) to the rated internal pressure of 280 psig. Results of the plain pipe are compared to pipe with joints. All testing was done using a special apparatus developed to accommodate the large deformations required for fatigue testing of PVC pipes. This apparatus is described as well as the test results. Both strains and stresses are plotted against cycles-to-failure. Finite element elastic models of the socket joined specimens were analyzed to establish the areas of stress concentration and to explain the observed failure modes. Phase 1 testing indicated that the pipe internal pressure might have a significant effect on fatigue life. Joined pipe specimens with no internal pressure were weaker in bending fatigue than pressurized pipe. As a result, the internal pressure was systematically varied between 0 psig and the rated pressure 280 psig. Results of Phase 2 testing revealed a dependence on internal pressure. Also, the effects of an adhesive primer and roughening of the pipe surface on joint fatigue strength were also studied. Strain rate is known to exert a profound influence on the fatigue behavior of thermoplastic polymers. This effect has not been systematically studied and remains an unknown

    Experimental Studies of Ratcheting of Pressurized Pipe

    No full text
    corecore