387 research outputs found

    Influence of the Dirac sea on proton electromagnetic knockout

    Full text link
    We use the relativistic distorted-wave impulse approximation (RDWIA) to study the effects of negative-energy components of Dirac wave functions on the left-right asymmetry for (e,e'p) reactions on 16-O with 0.2 < Q^2 < 0.8 and 12-C with 0.6 < Q^2 < 1.8 (GeV/c)^2. Spinor distortion is more important for the bound state than for the ejectile and the net effect decreases with Q^2. Spinor distortion breaks Godon equivalence and the data favor the CC2 operator with intermediate coupling to the sea. The left-right asymmetry for Q^2 < 1.2 (GeV/c)^2 is described well by RDWIA calcuations, but at Q^2 = 1.8 (GeV/c)^2 the observed variation with missing momentum is flatter than predicted.Comment: 12 pages, 9 figures, to be submitted to PR

    Isospin dependence of 6He+p optical potential and the symmetry energy

    Full text link
    A consistent folding analysis of the elastic p(6He,6He)p scattering and charge exchange p(6He,6Li*)n reaction data measured at Elab=41.6A MeV has been performed within the coupled channels formalism. We have used the isovector coupling to link the isospin dependence of 6He+p optical potential to the cross section of p(6He,6Li*)n reaction exciting the 0+ isobaric analog state (IAS) at 3.563 MeV in 6Li. Based on these results and the Hartree-Fock calculation of asymmetric nuclear matter using the same isospin-dependent effective nucleon-nucleon interaction, we were able to confirm that the most realistic value of the symmetry energy Esym is around 31 MeV. Our analysis has also shown that the measured charge exchange p(6He,6Li*)n data are quite sensitive to the halo tail of the 6He density used in the folding calculation and the IAS of 6Li is likely to have a halo structure similar to that established for the ground state of 6He.Comment: Accepted for publication in Phys. Rev.

    Higher order effects in the 16O(d,p)17O^{16}O(d,p)^{17}O and 16O(d,n)17F^{16}O(d,n)^{17}F transfer reactions

    Get PDF
    Full Coupled Channels Calculations were performed for the 16O(d,n)17F^{16}O(d,n)^{17}F and 16O(d,p)17O^{16}O(d,p)^{17}O transfer reactions at several deuteron incident energies from Elab=2.29E_{lab}=2.29 MeV up to 3.27 MeV. A strong polarization effect between the entrance channel and the transfer channels 16O(d,n)17F(1/2+,0.495)^{16}O(d,n)^{17}F(1/2^{+},0.495) and 16O(d,p)17O(1/2+,0.87)^{16}O(d,p)^{17}O(1/2^{+},0.87) was observed. This polarization effect had to be taken into account in order to obtain realistic spectroscopic factors from these reactions.Comment: 15 papes, 13 figures, accepted for publication in Phys. Rev.

    Approximations in Fusion and Breakup reactions induced by Radioactive Beams

    Get PDF
    Some commonly used approximations for complete fusion and breakup transmission coefficients in collisions of weakly bound projectiles at near barrier energies are assessed. We show that they strongly depend on the adopted classical trajectory and can be significantly improved with proper treatment of the incident and emergent currents in the WKB approximation.Comment: 15 pages, 7 figure

    A study of local approximation for polarization potentials

    Full text link
    We discuss the derivation of an equivalent \textit{l}-independent polarization potential for use in the optical Schr\"{o}dinger equation that describes the elastic scattering of heavy ions. Three diffferent methods are used for this purpose. Application of our theory to the low energy scattering of the halo nucleus 11^{11}Li from a 12^{12}C target is made. It is found that the notion of \textit{l}-independent polarization potential has some validity but can not be a good substitute for the \textit{l}-dependent local equivalent Feshbach polarization potential.Comment: 8 pages, 4 figure

    Nucleon-nucleon cross sections in neutron-rich matter and isospin transport in heavy-ion reactions at intermediate energies

    Full text link
    Nucleon-nucleon (NN) cross sections are evaluated in neutron-rich matter using a scaling model according to nucleon effective masses. It is found that the in-medium NN cross sections are not only reduced but also have a different isospin dependence compared with the free-space ones. Because of the neutron-proton effective mass splitting the difference between nn and pp scattering cross sections increases with the increasing isospin asymmetry of the medium. Within the transport model IBUU04, the in-medium NN cross sections are found to influence significantly the isospin transport in heavy-ion reactions. With the in-medium NN cross sections, a symmetry energy of Esym(ρ)≈31.6(ρ/ρ0)0.69E_{sym}(\rho)\approx 31.6(\rho /\rho_{0})^{0.69} was found most acceptable compared with both the MSU isospin diffusion data and the presently acceptable neutron-skin thickness in 208^{208}Pb. The isospin dependent part Kasy(ρ0)K_{asy}(\rho _{0}) of isobaric nuclear incompressibility was further narrowed down to −500±50-500\pm 50 MeV. The possibility of determining simultaneously the in-medium NN cross sections and the symmetry energy was also studied. The proton transverse flow, or even better the combined transverse flow of neutrons and protons, can be used as a probe of the in-medium NN cross sections without much hindrance from the uncertainties of the symmetry energy.Comment: 32 pages including 14 figures. Submitted to Phys. Rev.

    A new insight into the observation of spectroscopic strength reduction in atomic nuclei: implication for the physical meaning of spectroscopic factors

    Get PDF
    Experimental studies of one nucleon knockout from magic nuclei suggest that their nucleon orbits are not fully occupied. This conflicts a commonly accepted view of the shell closure associated with such nuclei. The conflict can be reconciled if the overlap between initial and final nuclear states in a knockout reaction are calculated by a non-standard method. The method employs an inhomogeneous equation based on correlation-dependent effective nucleon-nucleon (NN) interactions and allows the simplest wave functions, in which all nucleons occupy only the lowest nuclear orbits, to be used. The method also reproduces the recently established relation between reduction of spectroscopic strength, observed in knockout reactions on other nuclei, and nucleon binding energies. The implication of the inhomogeneous equation method for the physical meaning of spectroscopic factors is discussed.Comment: 4 pages, accepted by Phys. Rev. Let

    Particle decay branching ratios for states of astrophysical importance in 19Ne

    Full text link
    We have measured proton and alpha-particle branching ratios of excited states in 19Ne formed using the 19F(3He,t) reaction at a beam energy of 25 MeV. These ratios have a large impact on the astrophysical reaction rates of 15O(alpha,gamma), 18F(p,gamma) and 18F(p,alpha), which are of interest in understanding energy generation in x-ray bursts and in interpreting anticipated gamma-ray observations of novae. We detect decay protons and alpha-particles using a silicon detector array in coincidence with tritons measured in the focal plane detector of our Enge split-pole spectrograph. The silicon array consists of five strip detectors of the type used in the Louvain-Edinburgh Detector Array, subtending angles from 130 degrees to 165 degrees with approximately 14% lab efficiency. The correlation angular distributions give additional confidence in some prior spin-parity assignments that were based on gamma branchings. We measure Gamma_p/Gamma=0.387+-0.016 for the 665 keV proton resonance, which agrees well with the direct measurement of Bardayan et al.Comment: 5 pages, 2 figures, 3 tables. Prepared using RevTex 4 and BibTex. Further minor revisions, incl. fig. 1 font size increase, 1 table removal, and minor changes to the tex

    Fast nucleon emission as a probe of the isospin momentum dependence

    Full text link
    In this article we investigate the structure of the non-local part of the symmetry term, that leads to a splitting of the effective masses of protons and neutrons in asymmetric matter. Based on microscopic transport simulations we suggest some rather sensitive observables in collisions of neutron-rich (unstable) ions at intermediate (RIARIA) energies. In particular we focus the attention on pre-equilibrium nucleon emissions. We discuss interesting correlations between the N/Z content of the fast emitted particles and their rapidity or transverse momentum, that show a nice dependence on the prescription used for the effective mass splitting.Comment: 5 pages, 6 figures, revtex

    Optical-Model Description of Time-Reversal Violation

    Full text link
    A time-reversal-violating spin-correlation coefficient in the total cross section for polarized neutrons incident on a tensor rank-2 polarized target is calculated by assuming a time-reversal-noninvariant, parity-conserving ``five-fold" interaction in the neutron-nucleus optical potential. Results are presented for the system n+165Hon + {^{165}{\rm Ho}} for neutron incident energies covering the range 1--20 MeV. From existing experimental bounds, a strength of 2±102 \pm 10 keV is deduced for the real and imaginary parts of the five-fold term, which implies an upper bound of order 10−410^{-4} on the relative TT-odd strength when compared to the central real optical potential.Comment: 11 pages (Revtex
    • 

    corecore