626 research outputs found

    Resonant control of spin dynamics in ultracold quantum gases by microwave dressing

    Full text link
    We study experimentally interaction-driven spin oscillations in optical lattices in the presence of an off-resonant microwave field. We show that the energy shift induced by this microwave field can be used to control the spin oscillations by tuning the system either into resonance to achieve near-unity contrast or far away from resonance to suppress the oscillations. Finally, we propose a scheme based on this technique to create a flat sample with either singly- or doubly-occupied sites, starting from an inhomogeneous Mott insulator, where singly- and doubly-occupied sites coexist.Comment: 4 pages, 5 figure

    Achieving the Neel state in an optical lattice

    Full text link
    We theoretically study the possibility of reaching the antiferromagnetic phase of the Hubbard model by starting from a normal gas of trapped fermionic atoms and adiabatically ramping up an optical lattice. Requirements on the initial temperature and the number of atoms are determined for a three dimensional square lattice by evaluating the Neel state entropy, taking into account fluctuations around the mean-field solution. We find that these fluctuations place important limitations on adiabatically reaching the Neel state.Comment: 4 pages, 2 figures, RevTeX. Revised version incorporates minor corrections. Journal reference adde

    An Atom Laser with a cw Output Coupler

    Full text link
    We demonstrate a continuous output coupler for magnetically trapped atoms. Over a period of up to 100 ms a collimated and monoenergetic beam of atoms is continuously extracted from a Bose- Einstein condensate. The intensity and kinetic energy of the output beam of this atom laser are controlled by a weak rf-field that induces spin flips between trapped and untrapped states. Furthermore, the output coupler is used to perform a spectroscopic measurement of the condensate, which reveals the spatial distribution of the magnetically trapped condensate and allows manipulation of the condensate on a micrometer scale.Comment: 4 pages, 4 figure

    Single-Atom Resolved Fluorescence Imaging of an Atomic Mott Insulator

    Get PDF
    The reliable detection of single quantum particles has revolutionized the field of quantum optics and quantum information processing. For several years, researchers have aspired to extend such detection possibilities to larger scale strongly correlated quantum systems, in order to record in-situ images of a quantum fluid in which each underlying quantum particle is detected. Here we report on fluorescence imaging of strongly interacting bosonic Mott insulators in an optical lattice with single-atom and single-site resolution. From our images, we fully reconstruct the atom distribution on the lattice and identify individual excitations with high fidelity. A comparison of the radial density and variance distributions with theory provides a precise in-situ temperature and entropy measurement from single images. We observe Mott-insulating plateaus with near zero entropy and clearly resolve the high entropy rings separating them although their width is of the order of only a single lattice site. Furthermore, we show how a Mott insulator melts for increasing temperatures due to a proliferation of local defects. Our experiments open a new avenue for the manipulation and analysis of strongly interacting quantum gases on a lattice, as well as for quantum information processing with ultracold atoms. Using the high spatial resolution, it is now possible to directly address individual lattice sites. One could, e.g., introduce local perturbations or access regions of high entropy, a crucial requirement for the implementation of novel cooling schemes for atoms on a lattice

    Quantum Hall states for α=1/3\alpha = 1/3 in optical lattices

    Full text link
    We examine the quantum Hall (QH) states of the optical lattices with square geometry using Bose-Hubbard model (BHM) in presence of artificial gauge field. In particular, we focus on the QH states for the flux value of α=1/3\alpha = 1/3. For this, we use cluster Gutzwiller mean-field (CGMF) theory with cluster sizes of 3×23\times 2 and 3×33\times 3. We obtain QH states at fillings ν=1/2,1,3/2,2,5/2\nu = 1/2, 1, 3/2, 2, 5/2 with the cluster size 3×23\times 2 and ν=1/3,2/3,1,4/3,5/3,2,7/3,8/3\nu = 1/3, 2/3, 1, 4/3, 5/3, 2, 7/3, 8/3 with 3×33\times 3 cluster. Our results show that the geometry of the QH states are sensitive to the cluster sizes. For all the values of ν\nu, the competing superfluid (SF) state is the ground state and QH state is the metastable state.Comment: 6 pages, 4 figures. This is a pre-submission version of the manuscript. The published version is available online in "Quantum Collisions and Confinement of Atomic and Molecular Species, and Photons, Springer Proceedings in Physics 230, pp 211--221 (2019)". The final authenticated version is available online at : https://doi.org/10.1007/978-981-13-9969-5_2

    Optics with an Atom Laser Beam

    Full text link
    We report on the atom optical manipulation of an atom laser beam. Reflection, focusing and its storage in a resonator are demonstrated. Precise and versatile mechanical control over an atom laser beam propagating in an inhomogeneous magnetic field is achieved by optically inducing spin-flips between atomic ground states with different magnetic moment. The magnetic force acting on the atoms can thereby be effectively switched on and off. The surface of the atom optical element is determined by the resonance condition for the spin-flip in the inhomogeneous magnetic field. A mirror reflectivity of more than 98% is measured

    Observation of mesoscopic crystalline structures in a two-dimensional Rydberg gas

    Get PDF
    The ability to control and tune interactions in ultracold atomic gases has paved the way towards the realization of new phases of matter. Whereas experiments have so far achieved a high degree of control over short-ranged interactions, the realization of long-range interactions would open up a whole new realm of many-body physics and has become a central focus of research. Rydberg atoms are very well-suited to achieve this goal, as the van der Waals forces between them are many orders of magnitude larger than for ground state atoms. Consequently, the mere laser excitation of ultracold gases can cause strongly correlated many-body states to emerge directly when atoms are transferred to Rydberg states. A key example are quantum crystals, composed of coherent superpositions of different spatially ordered configurations of collective excitations. Here we report on the direct measurement of strong correlations in a laser excited two-dimensional atomic Mott insulator using high-resolution, in-situ Rydberg atom imaging. The observations reveal the emergence of spatially ordered excitation patterns in the high-density components of the prepared many-body state. They have random orientation, but well defined geometry, forming mesoscopic crystals of collective excitations delocalised throughout the gas. Our experiment demonstrates the potential of Rydberg gases to realise exotic phases of matter, thereby laying the basis for quantum simulations of long-range interacting quantum magnets.Comment: 10 pages, 7 figure

    Microscopic observation of magnon bound states and their dynamics

    Get PDF
    More than eighty years ago, H. Bethe pointed out the existence of bound states of elementary spin waves in one-dimensional quantum magnets. To date, identifying signatures of such magnon bound states has remained a subject of intense theoretical research while their detection has proved challenging for experiments. Ultracold atoms offer an ideal setting to reveal such bound states by tracking the spin dynamics after a local quantum quench with single-spin and single-site resolution. Here we report on the direct observation of two-magnon bound states using in-situ correlation measurements in a one-dimensional Heisenberg spin chain realized with ultracold bosonic atoms in an optical lattice. We observe the quantum walk of free and bound magnon states through time-resolved measurements of the two spin impurities. The increased effective mass of the compound magnon state results in slower spin dynamics as compared to single magnon excitations. In our measurements, we also determine the decay time of bound magnons, which is most likely limited by scattering on thermal fluctuations in the system. Our results open a new pathway for studying fundamental properties of quantum magnets and, more generally, properties of interacting impurities in quantum many-body systems.Comment: 8 pages, 7 figure
    corecore