2,145 research outputs found

    SUSY Production From TeV Scale Blackhole at LHC

    Full text link
    If the fundamental Planck scale is near a TeV, then we should expect to see TeV scale black holes at the LHC. Similarly, if the scale of supersymmetry breaking is sufficiently low, then we might expect to see light supersymmetric particles in the next generation of colliders. If the mass of the supersymmetric particle is of order a TeV and is comparable to the temperature of a typical TeV scale black hole, then such sparticles will be copiously produced via Hawking radiation: The black hole will act as a resonance for sparticles, among other things. In this paper we compared various signatures for SUSY production at LHC, and we contrasted the situation where the sparticles are produced directly via parton fusion processes with the situation where they are produced indirectly through black hole resonances. We found that black hole resonances provide a larger source for heavy mass SUSY (squark and gluino) production than the direct pQCD-SUSY production via parton fusion processes depending on the values of the Planck mass and blackhole mass. Hence black hole production at LHC may indirectly act as a dominant channel for SUSY production. We also found that the differential cross section d\sigma/dp_t for SUSY production increases as a function of the p_t (up to p_t equal to about 1 TeV or more) of the SUSY particles (squarks and gluinos), which is in sharp contrast with the pQCD predictions where the differential cross section d\sigma/dp_t decreases as p_t increases for high p_t about 1 TeV or higher. This is a feature for any particle emission from TeV scale blackhole as long as the temperature of the blackhole is very high (~ TeV). Hence measurement of increase of d\sigma/dp_t with p_t for p_t up to about 1 TeV or higher for final state particles might be a useful signature for blackhole production at LHC.Comment: Final Version, To Appear in Phys. Rev.

    Discovering hidden sectors with mono-photon Z' searches

    Get PDF
    In many theories of physics beyond the Standard Model, from extra dimensions to Hidden Valleys and models of dark matter, Z' bosons mediate between Standard Model particles and hidden sector states. We study the feasibility of observing such hidden states through an invisibly decaying Z' at the LHC. We focus on the process pp -> \gamma Z' -> \gamma X X*, where X is any neutral, (quasi-) stable particle, whether a Standard Model (SM) neutrino or a new state. This complements a previous study using pp -> Z Z' -> l+ l- X X*. Only the Z' mass and two effective charges are needed to describe this process. If the Z' decays invisibly only to Standard Model neutrinos, then these charges are predicted by observation of the Z' through the Drell-Yan process, allowing discrimination between Z' decays to SM neutrinos and invisible decays to new states. We carefully discuss all backgrounds and systematic errors that affect this search. We find that hidden sector decays of a 1 TeV Z' can be observed at 5 sigma significance with 50 fb^{-1} at the LHC. Observation of a 1.5 TeV state requires super-LHC statistics of 1 ab^{-1}. Control of the systematic errors, in particular the parton distribution function uncertainty of the dominant Z \gamma background, is crucial to maximize the LHC searchComment: 13 pages, 4 figure

    Split supersymmetry and the role of a light fermion in a supergravity-based scenario

    Full text link
    We investigate split supersymmetry (SUSY) within a supergravity framework, where local SUSY is broken by the F-term of a hidden sector chiral superfield X. With reasonably general assumptions, we show that the fermionic component of X will always have mass within a Tev. Though its coupling to the observable sector superfields is highly suppressed in Tev scale SUSY, we show that it can be enhanced by many orders in split SUSY, leading to its likely participation in accelerator phenomenology.We conclude with a specific example of such a scenario in a string based supergravity model.Comment: 12 Pages, Latex, Title changed, version thoroughly revise

    The compact, ∼1 kpc host galaxy of a quasar at a redshift of 7.1

    Get PDF
    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the [C ii] fine-structure line and the underlying far-infrared (FIR) dust continuum emission in J1120+0641, the most distant quasar currently known (z=7.1z=7.1). We also present observations targeting the CO(2–1), CO(7–6), and [C i] 369 μm lines in the same source obtained at the Very Large Array and Plateau de Bure Interferometer. We find a [C ii] line flux of F[CII]=1.11±0.10{F}_{[{\rm{C}}{\rm{II}}]}=1.11\pm 0.10 Jy km s−1\mathrm{km}\,{{\rm{s}}}^{-1} and a continuum flux density of S227GHz=0.53±0.04{S}_{227\mathrm{GHz}}=0.53\pm 0.04 mJy beam−1, consistent with previous unresolved measurements. No other source is detected in continuum or [C ii] emission in the field covered by ALMA (~ 25''). At the resolution of our ALMA observations (0farcs23, or 1.2 kpc, a factor of ~70 smaller beam area compared to previous measurements), we find that the majority of the emission is very compact: a high fraction (~80%) of the total line and continuum flux is associated with a region 1–1.5 kpc in diameter. The remaining ~20% of the emission is distributed over a larger area with radius lesssim4 kpc. The [C ii] emission does not exhibit ordered motion on kiloparsec scales: applying the virial theorem yields an upper limit on the dynamical mass of the host galaxy of (4.3±0.9)×1010(4.3\pm 0.9)\times {10}^{10} M⊙{M}_{\odot }, only ~20 × higher than the central black hole (BH). The other targeted lines (CO(2–1), CO(7–6), and [C i]) are not detected, but the limits of the line ratios with respect to the [C ii] emission imply that the heating in the quasar host is dominated by star formation, and not by the accreting BH. The star formation rate (SFR) implied by the FIR continuum is 105–340 M⊙ yr−1{M}_{\odot }\,{\mathrm{yr}}^{-1}, with a resulting SFR surface density of ~100–350 M⊙ yr−1{M}_{\odot }\,{\mathrm{yr}}^{-1} kpc−2, well below the value for Eddington-accretion-limited star formation

    Indirect Collider Signals for Extra Dimensions

    Get PDF
    A recent suggestion that quantum gravity may become strong near the weak scale has several testable consequences. In addition to probing for the new large (submillimeter) extra dimensions associated with these theories via gravitational experiments, one could search for the Kaluza Klein towers of massive gravitons which are predicted in these models and which can interact with the fields of the Standard Model. Here we examine the indirect effects of these massive gravitons being exchanged in fermion pair production in \epem annihilation and Drell-Yan production at hadron colliders. In the latter case, we examine a novel feature of this theory, which is the contribution of gluon gluon initiated processes to lepton pair production. We find that these processes provide strong bounds, up to several TeV, on the string scale which are essentially independent of the number of extra dimensions. In addition, we analyze the angular distributions for fermion pair production with spin-2 graviton exchanges and demonstrate that they provide a smoking gun signal for low-scale quantum gravity which cannot be mimicked by other new physics scenarios.Comment: Corrected typos, added table and reference

    Surveying the Inner Halo of the Galaxy with 2MASS-Selected Horizontal Branch Candidates

    Full text link
    We use 2MASS photometry to select blue horizontal branch (BHB) candidates covering the sky |b|>15 deg. A 12.5<J<15.5 sample of BHB stars traces the thick disk and inner halo to d<9 kpc, with a density comparable to that of M giant stars. We base our sample selection strategy on the Century Survey Galactic Halo Project, a survey that provides a complete, spectroscopically-identified sample of blue stars to a similar depth as the 2MASS catalog. We show that a -0.20<(J-H)_0<0.10, -0.10<(H-K)_0<0.10 color-selected sample of stars is 65% complete for BHB stars, and is composed of 47% BHB stars. We apply this photometric selection to the full 2MASS catalog, and see no spatial overdensities of BHB candidates at high Galactic latitude |b|>50 deg. We insert simulated star streams into the data and conclude that the high Galactic latitude BHB candidates are consistent with having no ~5 deg wide star stream with density greater than 0.33 objects deg^-2 at the 95% confidence level. The absence of structure suggests there have been no major accretion events in the inner halo in the last few Gyr. However, at low Galactic latitudes a two-point angular correlation analysis reveals structure on angular scales <1 deg. This structure is apparently associated with stars in the thick disk, and has a physical scale of 10-100 pc. Interestingly, such structures are expected by cosmological simulations that predict the majority of the thick disk may arise from accretion and disruption of satellite mergers.Comment: 11 pages, including figures. Accepted by AJ with minor revision

    Leptoquark pair production at the Fermilab Tevatron: Signal and backgrounds

    Full text link
    We perform a Monte-Carlo simulation of scalar leptoquark pair production at the Tevatron (energy =1.8 TeV and luminosity =100 pb^{-1}) with ISAJET. We also investigate the dominant sources of Standard Model background: Z*jj, ZZ production and heavy quark top-antitop. We find that the top-antitop background is the most important except near the Z pole where the Z*jj background is peaked. We also evaluate the signal-to-background ratio and find a discovery reach of 130 GeV (170 GeV) for a branching ratio of B(LQ-> eq)=0.5 (B=1).Comment: 8 pages, 6 figures, latex (revtex

    Extraordinary Magnetoresistance in Hybrid Semiconductor-Metal Systems

    Full text link
    We show that extraordinary magnetoresistance (EMR) arises in systems consisting of two components; a semiconducting ring with a metallic inclusion embedded. The im- portant aspect of this discovery is that the system must have a quasi-two-dimensional character. Using the same materials and geometries for the samples as in experiments by Solin et al.[1;2], we show that such systems indeed exhibit a huge magnetoresistance. The magnetoresistance arises due to the switching of electrical current paths passing through the metallic inclusion. Diagrams illustrating the flow of the current density within the samples are utilised in discussion of the mechanism responsible for the magnetoresistance effect. Extensions are then suggested which may be applicable to the silver chalcogenides. Our theory offers an excellent description and explanation of experiments where a huge magnetoresistance has been discovered[2;3].Comment: 12 Pages, 5 Figure

    Signal and Backgrounds for Leptoquarks at the LHC

    Get PDF
    We study the potentiality of the CERN Large Hadron Collider (LHC) to unravel the existence of first generation scalar leptoquarks. Working with the most general SU(2)L⊗U(1)YSU(2)_L \otimes U(1)_Y invariant leptoquark interactions, we analyze in detail the signals and backgrounds that lead to a final state containing a pair e+e−e^+e^- and jets. Our results indicate that a machine like the LHC will be able to discover leptoquarks with masses up to 2--3 TeV depending on their couplings.Comment: 37 pages, revtex, uses epsfig.sty (included), 15 figures (included

    Electroweak Corrections and Unitarity in Linear Moose Models

    Full text link
    We calculate the form of the corrections to the electroweak interactions in the class of Higgsless models which can be "deconstructed'' to a chain of SU(2) gauge groups adjacent to a chain of U(1) gauge groups, and with the fermions coupled to any single SU(2) group and to any single U(1) group along the chain. The primary advantage of our technique is that the size of corrections to electroweak processes can be directly related to the spectrum of vector bosons ("KK modes"). In Higgsless models, this spectrum is constrained by unitarity. Our methods also allow for arbitrary background 5-D geometry, spatially dependent gauge-couplings, and brane kinetic energy terms. We find that, due to the size of corrections to electroweak processes in any unitary theory, Higgsless models with localized fermions are disfavored by precision electroweak data. Although we stress our results as they apply to continuum Higgsless 5-D models, they apply to any linear moose model including those with only a few extra vector bosons. Our calculations of electroweak corrections also apply directly to the electroweak gauge sector of 5-D theories with a bulk scalar Higgs boson; the constraints arising from unitarity do not apply in this case.Comment: 50 pages, 11 eps figures, typos correcte
    • …
    corecore