6,069 research outputs found

    Effects of low level, low frequency electric fields on human reaction time

    Get PDF
    Low level, low frequency electric field effects on human reaction tim

    Optimization of thrust algorithm calibration for Computing System (TCS) for Thrust the NASA Highly Maneuverable Aircraft Technology (HiMAT) vehicle's propulsion system

    Get PDF
    A simplified gross thrust computing technique for the HiMAT J85-GE-21 engine using altitude facility data was evaluated. The results over the full engine envelope for both the standard engine mode and the open nozzle engine mode are presented. Results using afterburner casing static pressure taps are compared to those using liner static pressure taps. It is found that the technique is very accurate for both the standard and open nozzle engine modes. The difference in the algorithm accuracy for a calibration based on data from one test condition was small compared to a calibration based on data from all of the test conditions

    Numerical Studies of the two-leg Hubbard ladder

    Full text link
    The Hubbard model on a two-leg ladder structure has been studied by a combination of series expansions at T=0 and the density-matrix renormalization group. We report results for the ground state energy E0E_0 and spin-gap Δs\Delta_s at half-filling, as well as dispersion curves for one and two-hole excitations. For small UU both E0E_0 and Δs\Delta_s show a dramatic drop near t/t⊥∼0.5t/t_{\perp}\sim 0.5, which becomes more gradual for larger UU. This represents a crossover from a "band insulator" phase to a strongly correlated spin liquid. The lowest-lying two-hole state rapidly becomes strongly bound as t/t⊥t/t_{\perp} increases, indicating the possibility that phase separation may occur. The various features are collected in a "phase diagram" for the model.Comment: 10 figures, revte

    Effect of low-level, low-frequency electric fields on EEG and behavior in Macaca nemestrina

    Get PDF
    Effect of low level, low frequency electric fields on EEG and behavior of Macaca nemestrin

    Spin-wave excitation spectra and spectral weights in square lattice antiferromagnets

    Full text link
    Using a recently developed method for calculating series expansions of the excitation spectra of quantum lattice models, we obtain the spin-wave spectra for square lattice, S=1/2S=1/2 Heisenberg-Ising antiferromagnets. The calculated spin-wave spectrum for the Heisenberg model is close to but noticeably different from a uniformly renormalized classical (large-SS) spectrum with the renormalization for the spin-wave velocity of approximately 1.181.18. The relative weights of the single-magnon and multi-magnon contributions to neutron scattering spectra are obtained for wavevectors throughout the Brillouin zone.Comment: Two postscript figures, 4 two-column page

    Critical and off-critical studies of the Baxter-Wu model with general toroidal boundary conditions

    Full text link
    The operator content of the Baxter-Wu model with general toroidal boundary conditions is calculated analytically and numerically. These calculations were done by relating the partition function of the model with the generating function of a site-colouring problem in a hexagonal lattice. Extending the original Bethe-ansatz solution of the related colouring problem we are able to calculate the eigenspectra of both models by solving the associated Bethe-ansatz equations. We have also calculated, by exploring the conformal invariance at the critical point, the mass ratios of the underlying massive theory governing the Baxter-Wu model in the vicinity of its critical point.Comment: 32 pages latex, to appear in J. Phys. A: Math. Ge

    A closer look at symmetry breaking in the collinear phase of the J1−J2J_1-J_2 Heisenberg Model

    Full text link
    The large J2J_2 limit of the square-lattice J1−J2J_1-J_2 Heisenberg antiferromagnet is a classic example of order by disorder where quantum fluctuations select a collinear ground state. Here, we use series expansion methods and a meanfield spin-wave theory to study the excitation spectra in this phase and look for a finite temperature Ising-like transition, corresponding to a broken symmetry of the square-lattice, as first proposed by Chandra et al. (Phys. Rev. Lett. 64, 88 (1990)). We find that the spectra reveal the symmetries of the ordered phase. However, we do not find any evidence for a finite temperature phase transition. Based on an effective field theory we argue that the Ising-like transition occurs only at zero temperature.Comment: 4 pages and 5 figure
    • …
    corecore