193 research outputs found

    CORMASS: A Compact and Efficient NIR Spectrograph for Studying Low-Mass Objects

    Get PDF
    CorMASS (Cornell Massachusetts Slit Spectrograph) is a compact, low-resolution (R=300), double-pass prism cross-dispersed near-infrared (NIR) spectrograph in operation on the Palomar Observatory 60-inch telescope. Its 2-dimensional spectral format provides simultaneous coverage from lambda ~ 0.75 microns to lambda ~ 2.5 microns (z'JHK bands). A remotely operated cold flip mirror permits its NICMOS3 detector to function as a K_s slit viewer to assist object placement into the 2 arcsec x 15 arcsec slit. CorMASS was primarily designed for the rapid spectral classification of low-mass stellar and sub-stellar objects identified by the Two-Micron All Sky Survey (2MASS). CorMASS' efficiency and resolution also make it a versatile instrument for the spectral observation and classification of many other types of bright objects (K<14) including quasars, novae, and emission line objects.Comment: To be published in Feb 2001 PASP, 19 pages, 12 Figures, High Resolution file can be retrieved from ftp://iras2.tn.cornell.edu/pub/wilson/papers/cormass.ps.g

    Mechanistic Characterization and Molecular Modeling of Hepatitis B Virus Polymerase Resistance to Entecavir

    Get PDF
    BACKGROUND: Entecavir (ETV) is a deoxyguanosine analog competitive inhibitor of hepatitis B virus (HBV) polymerase that exhibits delayed chain termination of HBV DNA. A high barrier to entecavir-resistance (ETVr) is observed clinically, likely due to its potency and a requirement for multiple resistance changes to overcome suppression. Changes in the HBV polymerase reverse-transcriptase (RT) domain involve lamivudine-resistance (LVDr) substitutions in the conserved YMDD motif (M204V/I +/- L180M), plus an additional ETV-specific change at residues T184, S202 or M250. These substitutions surround the putative dNTP binding site or primer grip regions of the HBV RT. METHODS/PRINCIPAL FINDINGS: To determine the mechanistic basis for ETVr, wildtype, lamivudine-resistant (M204V, L180M) and ETVr HBVs were studied using in vitro RT enzyme and cell culture assays, as well as molecular modeling. Resistance substitutions significantly reduced ETV incorporation and chain termination in HBV DNA and increased the ETV-TP inhibition constant (K(i)) for HBV RT. Resistant HBVs exhibited impaired replication in culture and reduced enzyme activity (k(cat)) in vitro. Molecular modeling of the HBV RT suggested that ETVr residue T184 was adjacent to and stabilized S202 within the LVDr YMDD loop. ETVr arose through steric changes at T184 or S202 or by disruption of hydrogen-bonding between the two, both of which repositioned the loop and reduced the ETV-triphosphate (ETV-TP) binding pocket. In contrast to T184 and S202 changes, ETVr at primer grip residue M250 was observed during RNA-directed DNA synthesis only. Experimentally, M250 changes also impacted the dNTP-binding site. Modeling suggested a novel mechanism for M250 resistance, whereby repositioning of the primer-template component of the dNTP-binding site shifted the ETV-TP binding pocket. No structural data are available to confirm the HBV RT modeling, however, results were consistent with phenotypic analysis of comprehensive substitutions of each ETVr position. CONCLUSIONS: Altogether, ETVr occurred through exclusion of ETV-TP from the dNTP-binding site, through different, novel mechanisms that involved lamivudine-resistance, ETV-specific substitutions, and the primer-template

    Discovery of a Bright Field Methane (T-type) Brown Dwarf by 2MASS

    Get PDF
    We report the discovery of a bright (J = 13.83±\pm0.03) methane brown dwarf, or T dwarf, by the Two Micron All Sky Survey. This object, 2MASSI J0559191-140448, is the first brown dwarf identified by the newly commissioned CorMASS instrument mounted on the Palomar 60-inch Telescope. Near-infrared spectra from 0.9 - 2.35 \micron show characteristic CH4_4 bands at 1.1, 1.3, 1.6, and 2.2 \micron, which are significantly shallower than those seen in other T dwarfs discovered to date. Coupled with the detection of an FeH band at 0.9896 \micron and two sets of K I doublets at J-band, we propose that 2MASS J0559-14 is a warm T dwarf, close to the transition between L and T spectral classes. The brightness of this object makes it a good candidate for detailed investigation over a broad wavelength regime and at higher resolution.Comment: 21 pages, 3 figures, 2 tables, accepted to AJ for publication August 200

    Infrared Observations of the Candidate LBV 1806-20 & Nearby Cluster Stars

    Full text link
    We report near-infrared photometry, spectroscopy, and speckle imaging of the hot, luminous star we identify as candidate LBV 1806-20. We also present photometry and spectroscopy of 3 nearby stars, which are members of the same star cluster containing LBV 1806-20 and SGR 1806-20. The spectroscopy and photometry show that LBV 1806-20 is similar in many respects to the luminous ``Pistol Star'', albeit with some important differences. They also provide estimates of the effective temperature and reddening of LBV 1806-20, and confirm distance estimates, leading to a best estimate for the luminosity of this star of >5×106L> 5 \times 10^6 L_{\odot}. The nearby cluster stars have spectral types and inferred absolute magnitudes which confirm the distance (and thus luminosity) estimate for LBV 1806-20. If we drop kinematic measurements of the distance (15.11.3+1.815.1 ^{+1.8}_{-1.3} kpc), we have a lower limit on the distance of >9.5>9.5 kpc, and on the luminosity of >2×106L>2 \times 10^6 L_{\odot}, based on the cluster stars. If we drop both the kinematic and cluster star indicators for distance, an ammonia absorption feature sets yet another lower limit to the distance of >5.7>5.7 kpc, with a corresponding luminosity estimate of >7×105L>7 \times 10^5 L_{\odot} for the candidate LBV 1806-20. Furthermore, based on very high angular-resolution speckle images, we determine that LBV 1806-20 is not a cluster of stars, but is rather a single star or binary system. Simple arguments based on the Eddington luminosity lead to an estimate of the total mass of LBV 1806-20 (single or binary) exceeding 190M190 M_{\odot}. We discuss the possible uncertainties in these results, and their implications for the star formation history of this cluster.Comment: 36 pages, including 8 figures (Figures 1 and 7 in JPG format due to space); Accepted for publication in Ap

    Antiviral efficacy of lobucavir (BMS-180194), a cyclobutyl-guanosine nucleoside analogue, in the woodchuck (Marmota monax) model of chronic hepatitis B virus (HBV) infection

    Get PDF
    Abstract Lobucavir (BMS-180194), a cyclobutyl-guanosine nucleoside analogue, effectively reduced WHV-viremia in chronically infected carrier woodchucks (Marmota monax) by daily per os treatment. WHV-viremia in the animals was measured by the serum content of hybridizable WHV-genomic DNA. Lobucavir, given at daily doses of 10 and 20 mg/kg body weight, reduced WHV-viremia by a 10-to 200-fold range during therapy. Lobucavir, given at 5 mg/kg, suppressed WHV-viremia by a 10-to 30-fold range, whereas a 0.5 mg/kg dose had no significant effect. WHV-viremia was also measured by hepadnaviral endogenous polymerase activity (EPA) in sera of animals treated for 6 weeks at 5 and 0.5 mg/kg. Changes in EPA in sera of lobucavir treated animals were comparable to changes in WHV DNA levels. Viremia in treated carriers recrudesced to pretreatment levels by 2 weeks of therapy cessation. These results indicated that the minimally effective antiviral daily per os dose of lobucavir in WHV-carrier woodchucks was : 5 mg/kg

    Rabies Virus Infection Induces Type I Interferon Production in an IPS-1 Dependent Manner While Dendritic Cell Activation Relies on IFNAR Signaling

    Get PDF
    As with many viruses, rabies virus (RABV) infection induces type I interferon (IFN) production within the infected host cells. However, RABV has evolved mechanisms by which to inhibit IFN production in order to sustain infection. Here we show that RABV infection of dendritic cells (DC) induces potent type I IFN production and DC activation. Although DCs are infected by RABV, the viral replication is highly suppressed in DCs, rendering the infection non-productive. We exploited this finding in bone marrow derived DCs (BMDC) in order to differentiate which pattern recognition receptor(s) (PRR) is responsible for inducing type I IFN following infection with RABV. Our results indicate that BMDC activation and type I IFN production following a RABV infection is independent of TLR signaling. However, IPS-1 is essential for both BMDC activation and IFN production. Interestingly, we see that the BMDC activation is primarily due to signaling through the IFNAR and only marginally induced by the initial infection. To further identify the receptor recognizing RABV infection, we next analyzed BMDC from Mda-5−/− and RIG-I−/− mice. In the absence of either receptor, there is a significant decrease in BMDC activation at 12h post infection. However, only RIG-I−/− cells exhibit a delay in type I IFN production. In order to determine the role that IPS-1 plays in vivo, we infected mice with pathogenic RABV. We see that IPS-1−/− mice are more susceptible to infection than IPS-1+/+ mice and have a significantly increased incident of limb paralysis

    Machine learning on normalized protein sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Machine learning techniques have been widely applied to biological sequences, e.g. to predict drug resistance in HIV-1 from sequences of drug target proteins and protein functional classes. As deletions and insertions are frequent in biological sequences, a major limitation of current methods is the inability to handle varying sequence lengths.</p> <p>Findings</p> <p>We propose to normalize sequences to uniform length. To this end, we tested one linear and four different non-linear interpolation methods for the normalization of sequence lengths of 19 classification datasets. Classification tasks included prediction of HIV-1 drug resistance from drug target sequences and sequence-based prediction of protein function. We applied random forests to the classification of sequences into "positive" and "negative" samples. Statistical tests showed that the linear interpolation outperforms the non-linear interpolation methods in most of the analyzed datasets, while in a few cases non-linear methods had a small but significant advantage. Compared to other published methods, our prediction scheme leads to an improvement in prediction accuracy by up to 14%.</p> <p>Conclusions</p> <p>We found that machine learning on sequences normalized by simple linear interpolation gave better or at least competitive results compared to state-of-the-art procedures, and thus, is a promising alternative to existing methods, especially for protein sequences of variable length.</p

    Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect. Nature

    Get PDF
    The worldwide prevalence of chronic hepatitis C virus (HCV) infection is estimated to be approaching 200 million people We designed a mechanistically unbiased approach based on chemical genetics to identify chemical starting points for interfering with HCV replication. Our differentiating strategy centred on the identification of compounds functionally distinct from those acting on the traditional targets of antiviral research in this field, the NS3 protease and the NS5B RNA-dependent RNA polymerase 10 . BMS-858 formed the basis of an extensive series of chemical refinements that focused on improving antiviral potency, broadening inhibitory activity to encompass the HCV 1a genotype, and optimizing for oral bioavailability and sustained pharmacokinetic properties. After defining symmetry as an important contributor to antiviral activity 10 , a discovery that preceded the disclosure of structural information (see below), we subsequently identified BMS-79005
    corecore