27 research outputs found

    The Role of Ascorbate Free Radical as an Electron Acceptor to Cytochrome b-Mediated Trans-Plasma Membrane Electron Transport in Higher Plants.

    No full text
    The action of ascorbate free radical as an electron acceptor to cytochrome b-mediated trans-plasma membrane electron transport is demonstrated. Addition of ascorbate free radical to ascorbate-loaded plasma membrane vesicles caused a rapid oxidation of the cytochrome, followed by a slower re-reduction. The fully reduced dehydroascorbate was ineffective

    The Ascorbate Carrier of Higher Plant Plasma Membranes Preferentially Translocates the Fully Oxidized (Dehydroascorbate) Molecule.

    No full text
    Recently, the uptake of 14C-labeled ascorbate (ASC) into highly purified bean (Phaseolus vulgaris L.) plasma membrane vesicles was demonstrated in our laboratory. However, the question of the redox status of the transported molecule (ASC or dehydroascorbate [DHA]) remained unanswered. In this paper we present evidence that DHA is transported through the plasma membrane. High-performance liquid chromatography analysis of the redox status of ASC demonstrated that freshly purified plasma membranes exhibit a high ASC oxidation activity. Although it is not yet clear whether this activity is enzymatic, it complicates the interpretation of ASC-transport experiments in vitro and in vivo. In an attempt to correlate the ASC redox status to transport of the molecule, the ability of different compounds to reduce DHA was analyzed and their effect on ASC-transport activity tested. Administering of various reductants resulted in different levels of inhibition of ASC uptake (dithiothreitol > dithioerythritol > [beta]-mercaptoethanol > [beta]-mercaptopropanol). Glutathione, cysteine, dithionite, and thiourea did not significantly affect ASC transport. Statistical analysis indicated a strong correlation of the Spearman rank correlation coefficient (Rs) of 0.919 (P = 0.0005, n = 9) between the level of ASC oxidation and the amount of transported molecules into the vesicles. The administering of ASC oxidants such as ferricyanide and ASC oxidase resulted in a stimulated ASC uptake into the plasma membrane vesicles. Together, our results demonstrate that a vitamin C carrier in purified bean plasma membranes translocates DHA from the apoplast to the cytosol
    corecore