4,992 research outputs found

    Coherent state triplets and their inner products

    Full text link
    It is shown that if H is a Hilbert space for a representation of a group G, then there are triplets of spaces F_H, H, F^H, in which F^H is a space of coherent state or vector coherent state wave functions and F_H is its dual relative to a conveniently defined measure. It is shown also that there is a sequence of maps F_H -> H -> F^H which facilitates the construction of the corresponding inner products. After completion if necessary, the F_H, H, and F^H, become isomorphic Hilbert spaces. It is shown that the inner product for H is often easier to evaluate in F_H than F^H. Thus, we obtain integral expressions for the inner products of coherent state and vector coherent state representations. These expressions are equivalent to the algebraic expressions of K-matrix theory, but they are frequently more efficient to apply. The construction is illustrated by many examples.Comment: 33 pages, RevTex (Latex2.09) This paper is withdrawn because it contained errors that are being correcte

    The coupling of valence shell and particle-hole degrees of freedom in a partial random phase approximation

    Full text link
    It is well known that the random phase approximation breaks down in the absence of a substantial energy gap between occupied and unoccupied single-particle states. Particle-hole excitations are then inevitably accompanied by substantial rearrangements of the particles in the neighbourhood of the Fermi surface. To accommodate this situation, a partial RPA is introduced which corresponds to replacing only the particle-hole degrees of freedom by bosons but leaving the valence space degrees of freedom intact. The PRPA is therefore a mapping of the many-fermion dynamics into the dynamics of a coupled boson-valence space. In application of the PRPA, algebraic methods, of either a fermionic or Lie algebra type, can be introduced, if desired, to facilitate the treatment of the valence space degrees of freedom. Results of applications are presented in which the valence space particles are treated in the rotational and SU(3) models, and are coupled strongly to giant dipole and quadrupole resonances.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26774/1/0000326.pd

    New perspective on the U(n) Wigner-Racah calculus. I. Vector coherent state theory and construction of Gel'fand bases

    Full text link
    Using a vector coherent state theory, it is shown that the construction of Gel'fand bases for the unitary group is particularly simple. The very specific rules for construction of the states greatly facilitate the subsequent computation of matrix elements of the generators of the u(n) Lie algebra.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/48816/2/jav20i9p2241.pd

    Canonical orthonormal Wigner supermultiplet basis

    Full text link
    The explicit construction of an orthonormal basis for states of good spin, isospin and SU(4) Wigner supermultiplet symmetry is given in a Bargmann representation space. A complete set of quantum labels is provided by a Sp(3, R) contains/implies U(3) complementary symmetry.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/48815/2/jav20i2p257.pd

    STM Imaging of Flux Line Arrangements in the Peak Effect Regime

    Get PDF
    We present the results of a study of vortex arrangements in the peak-effect regime of 2H-NbSe_2 by scanning tunneling microscopy. By slowly increasing the temperature in a constant magnetic field, we observed a sharp transition from collective vortex motion to positional fluctuations of individual vortices at the temperature which coincides with the onset of the peak effect in ac-susceptibility. We conclude that the peak effect is a disorder driven transition, with the pinning energy winning from the elastic energy.Comment: 4 pages, 4 figures included Manuscript has been submitte

    Charge-radius change and nuclear moments in the heavy tin isotopes from laser spectroscopy: Charge radius of 132^{132}Sn

    Get PDF
    NESTER ACCLaser spectroscopy measurements have been carried out on the neutron-rich tin isotopes with the COMPLIS experimental setup. Using the 5s25p25s^25p^2 3P05s25p6s^3P_0 \rightarrow 5s^25_p6s 3P1^3P_1 optical transition, hyperfine spectra of 126132^{126-132}Sn and 125,127,129131Snm^{125,127,129-131}Sn^m were recorded for the first time. The nuclear moments and the mean square charge radius variation (δ)wereextracted.Fromthequadrupolemomentvalues,thesenucleiappeartobespherical.Themagneticmomentsmeasuredarethuscomparedwiththosepredictedbysphericalbasisapproaches.Fromthemeasured\delta) were extracted. From the quadrupole moment values, these nuclei appear to be spherical. The magnetic moments measured are thus compared with those predicted by spherical basis approaches. From the measured \delta, the absolute charge radii of these isotopes were deduced in particular that of the doubly magic 132^{132}Sn nucleus. The comparison of the results with several mean-field-type calculations have shown that dynamical effects play an important role in the tin isotopes

    Recent results on neutron rich tin isotopes by laser spectroscopy

    Get PDF
    Laser spectroscopy measurements have been performed on neutron rich tin isotopes using the COMPLIS experimental setup. The nuclear charge radii of the even-even isotopes from A=108 to 132 are compared to the results of macroscopic and microscopic calculations. The improvements and optimizations needed to perform the isotope shift measurement on 134^{134}Sn are presented
    corecore