817 research outputs found

    A numerical study of the correspondence between paths in a causal set and geodesics in the continuum

    Full text link
    This paper presents the results of a computational study related to the path-geodesic correspondence in causal sets. For intervals in flat spacetimes, and in selected curved spacetimes, we present evidence that the longest maximal chains (the longest paths) in the corresponding causal set intervals statistically approach the geodesic for that interval in the appropriate continuum limit.Comment: To the celebration of the 60th birthday of Rafael D. Sorki

    Are we seeing the beginnings of Inflation?

    Full text link
    Phantom Cosmology provides an unique opportunity to "connect" the phantom driven (low en- ergy meV scale) dark energy phase to the (high energy GUT scale) inflationary era. This is possible because the energy density increases in phantom cosmology. We present a concrete model where the energy density, but not the scale factor, cycles through phases of standard radiation/matter domi- nation followed by dark energy/inflationary phases, and the pattern repeating itself. An interesting feature of the model is that once we include interactions between the "phantom fluid" and ordinary matter, the Big rip singularity is avoided with the phantom phase naturally giving way to a near exponential inflationary expansion.Comment: 17 pages, 1 figur

    Statistical analysis of storm-time near-Earth current systems

    Get PDF
    Currents from the Hot Electron and Ion Drift Integrator (HEIDI) inner magnetospheric model results for all of the 90 intense storms (disturbance storm-time (Dst) minimum \u3c −100 nT) from solar cycle 23 (1996–2005) are calculated, presented, and analyzed. We have categorized these currents into the various systems that exist in near-Earth space, specifically the eastward and westward symmetric ring current, the partial ring current, the banana current, and the tail current. The current results from each run set are combined by a normalized superposed epoch analysis technique that scales the timeline of each phase of each storm before summing the results. It is found that there is a systematic ordering to the current systems, with the asymmetric current systems peaking during storm main phase (tail current rising first, then the banana current, followed by the partial ring current) and the symmetric current systems peaking during the early recovery phase (westward and eastward symmetric ring current having simultaneous maxima). The median and mean peak amplitudes for the current systems ranged from 1 to 3 MA, depending on the setup configuration used in HEIDI, except for the eastward symmetric ring current, for which the mean never exceeded 0.3 MA for any HEIDI setup. The self-consistent electric field description in HEIDI yielded larger tail and banana currents than the Volland–Stern electric field, while the partial and symmetric ring currents had similar peak values between the two applied electric field models

    Anatomic variation of alveolar antral artery

    Get PDF
    The alveolar antral artery (AAA) was unanimously encountered in a few available studies with an intraosseous course to anastomose with the infraorbital artery. We report here two cases in which dissection revealed an extraosseous placement of this artery, between the lateral wall of the maxillary sinus and the Schneiderian membrane. The frequency of occurrence of the intraosseous anastomosis should be so modified from 100% to < 100%. This arterial course over the Schneiderian membrane is important during surgical procedures: if it is identified preoperatively it can be avoided, or ligaturated, if not, it may be accidentally severed and uncomfortable haemorrhage may disturb the surgical procedure. In the first case reported here hybrid morphology of the AAA was also found, demonstrating that arterial anatomy should be considered with caution, on a case-by-case basis

    Force and energy dissipation variations in non-contact atomic force spectroscopy on composite carbon nanotube systems

    Full text link
    UHV dynamic force and energy dissipation spectroscopy in non-contact atomic force microscopy were used to probe specific interactions with composite systems formed by encapsulating inorganic compounds inside single-walled carbon nanotubes. It is found that forces due to nano-scale van der Waals interaction can be made to decrease by combining an Ag core and a carbon nanotube shell in the Ag@SWNT system. This specific behaviour was attributed to a significantly different effective dielectric function compared to the individual constituents, evaluated using a simple core-shell optical model. Energy dissipation measurements showed that by filling dissipation increases, explained here by softening of C-C bonds resulting in a more deformable nanotube cage. Thus, filled and unfilled nanotubes can be discriminated based on force and dissipation measurements. These findings have two different implications for potential applications: tuning the effective optical properties and tuning the interaction force for molecular absorption by appropriately choosing the filling with respect to the nanotube.Comment: 22 pages, 6 figure

    Testing the magnetotail configuration based on observations of low‐altitude isotropic boundaries during quiet times

    Full text link
    We investigate the configuration of the geomagnetic field on the nightside magnetosphere during a quiet time interval based on National Oceanic and Atmospheric Administration Polar Orbiting Environment Satellites Medium Energy Proton and Electron Detector (NOAA/POES MEPED) measurements in combination with numerical simulations of the global terrestrial magnetosphere using the Space Weather Modeling Framework. Measurements from the NOAA/POES MEPED low‐altitude data sets provide the locations of isotropic boundaries; those are used to extract information regarding the field structure in the source regions in the magnetosphere. In order to evaluate adiabaticity and mapping accuracy, which is mainly controlled by the ratio between the radius of curvature and the particle’s Larmor radius, we tested the threshold condition for strong pitch angle scattering based on the MHD magnetic field solution. The magnetic field configuration is represented by the model with high accuracy, as suggested by the high correlation coefficients and very low normalized root‐mean‐square errors between the observed and the modeled magnetic field. The scattering criterion, based on the values of k=Rcρ ratio at the crossings of magnetic field lines, associated with isotropic boundaries, with the minimum B surface, predicts a critical value of kCR∌33. This means that, in the absence of other scattering mechanisms, the strong pitch angle scattering takes place whenever the Larmor radius is ∌33 times smaller than the radius of curvature of the magnetic field, as predicted by the Space Weather Modeling Framework.Key PointsWe tested the threshold condition for strong pitch angle scattering based on the MHD magnetic fieldSWMF model suggests a threshold condition for strong pitch angle scattering of k = 33For quiet time, the k parameter varies within 2 orders of magnitudePeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135070/1/jgra52310.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135070/2/jgra52310_am.pd
    • 

    corecore