1,017 research outputs found
Acculturation and gestational weight gain in a predominantly puerto rican population
Background
Identifying risk factors that affect excess weight gain during pregnancy is critical, especially among women who are at a higher risk for obesity. The goal of this study was to determine if acculturation, a possible risk factor, was associated with gestational weight gain in a predominantly Puerto Rican population. Methods
We utilized data from Proyecto Buena Salud, a prospective cohort study of Hispanic women in Western Massachusetts, United States. Height, weight and gestational age were abstracted from medical records among participants with full-term pregnancies (n=952). Gestational weight gain was calculated as the difference between delivery and prepregnancy weight. Acculturation (measured via a psychological acculturation scale, generation in the US, place of birth and spoken language preference) was assessed in early pregnancy. Results
Adjusting for age, parity, perceived stress, gestational age, and prepregnancy weight, women who had at least one parent born in Puerto Rico/Dominican Republic (PR/DR) and both grandparents born in PR/DR had a significantly higher mean total gestational weight gain (0.9 kg for at least one parent born in PR/DR and 2.2kg for grandparents born in PR/DR) and rate of weight gain (0.03 kg/wk for at least one parent born in PR/DR and 0.06 kg/wk for grandparents born in PR/DR) vs. women who were of PR/DR born. Similarly, women born in the US had significantly higher mean total gestational weight gain (1.0 kg) and rate of weight gain (0.03 kg/wk) vs. women who were PR/ DR born. Spoken language preference and psychological acculturation were not significantly associated with total or rate of pregnancy weight gain. Conclusion
We found that psychological acculturation was not associated with gestational weight gain while place of birth and higher generation in the US were significantly associated with higher gestational weight gain. We interpret these findings to suggest the potential importance of the US âobesogenicâ environment in influencing unhealthy pregnancy weight gains over specific aspects of psychological acculturation
Coupling Experiment and Simulation in Electromagnetic Forming Using Photon Doppler Velocimetry
Modeling electromagnetic forming processes is in many ways simpler than modeling traditional metal forming processes. In electromagnetic forming the problem is often dominated by inertial acceleration by a magnetic field. This is a much better posed problem than the more traditional ones that are often dominated by complex three dimensional constitutive behavior and frictional effects. However, important aspects of the problem are dominated by the constitutive properties of the material, and often electromagnetic forming is performed in a regime where there is little reliable material strength data. Strain rates are often high (102 to 104 s-1 is the typical range for electromagnetic forming). Also, heat is generated both by ohmic heating as well as by plastic deformation, and peak temperatures can be quite high. Also, while hightemperature, high-strain-rate data is scarce, there is little or no data in cases where temperature rises significantly over very short times (tens of micro-seconds) as happens in electromagnetic metal forming. This rapid temperature rise is very important to the material response because the short time scales largely preclude the material from recovery and recrystallization processes and precipitates cannot dissolve as they normally would in an age-hardening alloy in these time scales. This presentation will show how advanced instrumentation, particularly the Photon Doppler Velocimeter (PDV) can be coupled with electromagnetic forming and provide both avenues to characterize material as well as to provide very critical tests of numerical models of the process
Secondary students' values and perceptions of science-related careers: responses to vignette-based scenarios
There has been concern about the attractiveness of science-based careers to many adolescent learners, and it has been suggested that school science may not always recognise or engage personal values that are important to young people in making life choices. The present study discusses interview comments made by upper secondary level students in England when 15 young people were asked to give their personal responses to brief vignettes describing scientific careers. Using an interview-about-scenarios approach, the students were asked about whether they would feel comfortable working in the scientific careers represented. The career areas were purposefully selected because they might be considered to potentially raise issues in relation to personal values or commitments that some students might hold. A range of student perceptions relating to the mooted careers were elicited (positive, negative and indifferent), but all of the participants raised issues that impacted on the acceptability or attractiveness of at least one of the mooted scientific careers, in terms of aspects of their own personal beliefs and values systems. It is recommended that teachers and career advisors should be aware of the range of value-related considerations that influence student views of science-related careers and should consider exploring aspects of science-based careers that link to values commonly shared by young people. This exploratory study also offers indications for directions for further research exploring how learners' value systems impact upon their perceptions of science and scientific work
Genetic testing of children for adult-onset conditions: opinions of the British adult population and implications for clinical practice
This study set out to explore the attitudes of a representative sample of the British public towards genetic testing in children to predict disease in the future. We sought opinions about genetic testing for adult-onset conditions for which no prevention/treatment is available during childhood, and about genetic 'carrier' status to assess future reproductive risks. The study also examined participants' level of agreement with the reasons professional organisations give in favour of deferring such testing. Participants (n=2998) completed a specially designed questionnaire, distributed by email. Nearly half of the sample (47%) agreed that parents should be able to test their child for adult-onset conditions, even if there is no treatment or prevention at time of testing. This runs contrary to professional guidance about genetic testing in children. Testing for carrier status was supported by a larger proportion (60%). A child's future ability to decide for her/himself if and when to be tested was the least supported argument in favour of deferring testing.European Journal of Human Genetics advance online publication, 5 November 2014; doi:10.1038/ejhg.2014.221
English secondary studentsâ thinking about the status of scientific theories: consistent, comprehensive, coherent and extensively evidenced explanations of aspects of the natural world â or just âan idea someone hasâ
Teaching about the nature of science (NOS) is seen as a priority for science education in many national contexts. The present paper focuses on one central issue in learning about NOS: understanding the nature and status of scientific theories. A key challenge in teaching about NOS is to persuade students that scientific knowledge is generally robust and reliable, yet also in principle always open to challenge and modification. Theories play a central role, as they are a form of conjectural knowledge that over time may be abandoned, replaced, modified, yet sometimes become well established as current best scientific understanding. The present paper reports on findings from interviews with 13â14 year olds in England where target knowledge presents theories as âconsistent, comprehensive, coherent and extensively evidenced explanations of aspects of the natural worldâ. Student thinking reflected a two-tier typology of scientific knowledge in which largely unsupported imaginative ideas (âtheoriesâ) became transformed into fairly definitive knowledge (such as laws) through relatively straightforward testing. These results are considered in relation to research into intellectual development which indicates that effective teaching in this area requires careful scaffolding of student learning, but has potential to contribute to supporting intellectual development across the curriculum.This is the author accepted manuscript. The final version is available from Taylor & Francis via http://dx.doi.org/10.1080/09585176.2015.104392
Analytical and numerical analyses of the micromechanics of soft fibrous connective tissues
State of the art research and treatment of biological tissues require
accurate and efficient methods for describing their mechanical properties.
Indeed, micromechanics motivated approaches provide a systematic method for
elevating relevant data from the microscopic level to the macroscopic one. In
this work the mechanical responses of hyperelastic tissues with one and two
families of collagen fibers are analyzed by application of a new variational
estimate accounting for their histology and the behaviors of their
constituents. The resulting, close form expressions, are used to determine the
overall response of the wall of a healthy human coronary artery. To demonstrate
the accuracy of the proposed method these predictions are compared with
corresponding 3-D finite element simulations of a periodic unit cell of the
tissue with two families of fibers. Throughout, the analytical predictions for
the highly nonlinear and anisotropic tissue are in agreement with the numerical
simulations
Microwave Electrodynamics of Electron-Doped Cuprate Superconductors
We report microwave cavity perturbation measurements of the temperature
dependence of the penetration depth, lambda(T), and conductivity, sigma(T) of
Pr_{2-x}Ce_{x}CuO_{4-delta} (PCCO) crystals, as well as parallel-plate
resonator measurements of lambda(T) in PCCO thin films. Penetration depth
measurements are also presented for a Nd_{2-x}Ce_{x}CuO_{4-delta} (NCCO)
crystal. We find that delta-lambda(T) has a power-law behavior for T<T_c/3, and
conclude that the electron-doped cuprate superconductors have nodes in the
superconducting gap. Furthermore, using the surface impedance, we have derived
the real part of the conductivity, sigma_1(T), below T_c and found a behavior
similar to that observed in hole-doped cuprates.Comment: 4 pages, 4 figures, 1 table. Submitted to Physical Review Letters
revised version: new figures, sample characteristics added to table, general
clarification give
- âŠ