2,932 research outputs found

    Quantum Energy Teleportation with Electromagnetic Field: Discrete vs. Continuous Variables

    Full text link
    It is well known that usual quantum teleportation protocols cannot transport energy. Recently, new protocols called quantum energy teleportation (QET) have been proposed, which transport energy by local operations and classical communication with the ground states of many-body quantum systems. In this paper, we compare two different QET protocols for transporting energy with electromagnetic field. In the first protocol, a 1/2 spin (a qubit) is coupled with the quantum fluctuation in the vacuum state and measured in order to obtain one-bit information about the fluctuation for the teleportation. In the second protocol, a harmonic oscillator is coupled with the fluctuation and measured in order to obtain continuous-variable information about the fluctuation. In the spin protocol, the amount of teleported energy is suppressed by an exponential damping factor when the amount of input energy increases. This suppression factor becomes power damping in the case of the harmonic oscillator protocol. Therefore, it is concluded that obtaining more information about the quantum fluctuation leads to teleporting more energy. This result suggests a profound relationship between energy and quantum information.Comment: 24 pages, 4 figures, to be published in Journal of Physics A: Mathematical and Theoretica

    Quadrupole Susceptibility of Gd-Based Filled Skutterudite Compounds

    Full text link
    It is shown that quadrupole susceptibility can be detected in Gd compounds contrary to our textbook knowledge that Gd3+^{3+} ion induces pure spin moment due to the Hund's rules in an LSLS coupling scheme. The ground-state multiplet of Gd3+^{3+} is always characterized by JJ=7/2, where JJ denotes total angular momentum, but in a jj-jj coupling scheme, one ff electron in jj=7/2 octet carries quadrupole moment, while other six electrons fully occupy jj=5/2 sextet, where jj denotes one-electron total angular momentum. For realistic values of Coulomb interaction and spin-orbit coupling, the ground-state wavefunction is found to contain significant amount of the jj-jj coupling component. From the evaluation of quadrupole susceptibility in a simple mean-field approximation, we point out a possibility to detect the softening of elastic constant in Gd-based filled skutterudites.Comment: 8 pages, 4 figure

    Can Impurity Effects Help to Identify the Symmetry of the Order Parameter of the Cuprates?

    Full text link
    The effects of non-magnetic impurities on the properties of superconductors with order parameters (OP) of different symmetry are discussed. In particular, we contrast the case of a d_{x^2 - y^2} with various forms of an anisotropic s-wave (ASW) gap. The biggest qualitative difference occurs if the phase of the s-wave OP does not change sign.Comment: 2pages, uuencoded Postscript, to appear in the Proceedings of the M^2-HTSC IV conferenc

    Electric Dipolar Susceptibility of the Anderson-Holstein Model

    Full text link
    The temperature dependence of electric dipolar susceptibility \chi_P is discussed on the basis of the Anderson-Holstein model with the use of a numerical renormalization group (NRG) technique. Note that P is related with phonon Green's function D. In order to obtain correct temperature dependence of P at low temperatures, we propose a method to evaluate P through the Dyson equation from charge susceptibility \chi_c calculated by the NRG, in contrast to the direct NRG calculation of D. We find that the irreducible charge susceptibility estimated from \chi_c agree with the perturbation calculation, suggesting that our method works well.Comment: 4 pages, 4 figure

    Kondo Effect in an Electron System with Dynamical Jahn-Teller Impurity

    Full text link
    We investigate how Kondo phenomenon occurs in the Anderson model dynamically coupled with local Jahn-Teller phonons. It is found that the total angular moment composed of electron pseudo-spin and phonon angular moments is screened by conduction electrons. Namely, phonon degrees of freedom essentially contribute to the formation of singlet ground state. A characteristic temperature of the Kondo effect due to dynamical Jahn-Teller phonons is explained by an effective ss-dd Hamiltonian with anisotropic exchange interaction obtained from the Jahn-Teller-Anderson model in a non-adiabatic region.Comment: 5 pages, 3 figure

    Multipole as ff-Electron Spin-Charge Density in Filled Skutterudites

    Full text link
    It is shown that ff-electron multipole is naturally defined as spin-charge one-electron density operator in the second-quantized form with the use of tensor operator on the analogy of multipole expansion of electromagnetic potential from charge distribution in electromagnetism. Due to this definition of multipole, it is possible to determine multipole state from a microscopic viewpoint on the basis of the standard linear response theory for multipole susceptibility. In order to discuss multipole properties of filled skutterudites, we analyze a seven-orbital impurity Anderson model by employing a numerical renormalization group method. We show our results on possible multipole states of filled skutterudite compounds.Comment: To appear in the Proceedings of International Conference on "New Quantum Phenomena in Skutterudite and Related Systems" (September 2007, Kobe, Japan

    Multipole correlations in low-dimensional f-electron systems

    Full text link
    By using a density matrix renormalization group method, we investigate the ground-state properties of a one-dimensional three-orbital Hubbard model on the basis of a j-j coupling scheme. For B40≠0B_4^0 \ne 0, where B40B_4^0 is a parameter to control cubic crystalline electric field effect, one orbital is itinerant, while other two are localized. Due to the competition between itinerant and localized natures, we obtain orbital ordering pattern which is sensitive to B40B_4^0, leading to a characteristic change of Γ3g\Gamma_{3g} quadrupole state into an incommensurate structure. At B40=0B_4^0 = 0, all the three orbitals are degenerate, but we observe a peak at q=0q = 0 in Γ3g\Gamma_{3g} quadrupole correlation, indicating a ferro-orbital state, and the peak at q=πq = \pi in Γ4u\Gamma_{4u} dipole correlation, suggesting an antiferromagnetic state. We also discuss the effect of Γ4u\Gamma_{4u} octupole on magnetic anisotropy.Comment: 4 pages, 3 figures, Proceedings of ASR-WYP-2005 (September 27-29, 2005, Tokai

    Multipole State of Heavy Lanthanide Filled Skutterudites

    Full text link
    We discuss multipole properties of filled skutterudites containing heavy lanthanide Ln from a microscopic viewpoint on the basis of a seven-orbital Anderson model. For Ln=Gd, in contrast to naive expectation, quadrupole moments remain in addition to main dipole ones. For Ln=Ho, we find an exotic state governed by octupole moment. For Ln=Tb and Tm, no significant multipole moments appear at low temperatures, while for Ln=Dy, Er, and Yb, dipole and higher-order multipoles are dominant. We briefly discuss possible relevance of these multipole states with actual materials.Comment: 5 pages, 3 figure

    Multiplicity formulae for discrete series

    Get PDF
    This article does not have an abstract
    • …
    corecore