7,070 research outputs found
Performance of the CMS Pixel Detector at an upgraded LHC
The CMS experiment will include a pixel detector for pattern recognition and
vertexing. It will consist of three barrel layers and two endcaps on each side,
providing three space-points up to a pseudoraditity of 2.1. Taking into account
the expected limitations of its performance in the LHC environment an 8-9 layer
pixel detector for an upgraded LHC is discussed.Comment: Contribution to the 10th European Symposium on Semiconductor
Detectors, June 12 - 16, 2005 in Wildbad Kreuth, Germany. 6 pages, 4 figures,
1 table. Referee's comments implemente
Design and Performance of the CMS Pixel Detector Readout Chip
The readout chip for the CMS pixel detector has to deal with an enormous data
rate. On-chip zero suppression is inevitable and hit data must be buffered
locally during the latency of the first level trigger. Dead-time must be kept
at a minimum. It is dominated by contributions coming from the readout. To keep
it low an analog readout scheme has been adopted where pixel addresses are
analog coded. We present the architecture of the final CMS pixel detector
readout chip with special emphasis on the analog readout chain. Measurements of
its performance are discussed.Comment: 8 pages, 11 figures. Contribution to the Proceedings of the Pixel2005
Workshop, Bonn, German
Building CMS Pixel Barrel Detectur Modules
For the barrel part of the CMS pixel tracker about 800 silicon pixel detector
modules are required. The modules are bump bonded, assembled and tested at the
Paul Scherrer Institute. This article describes the experience acquired during
the assembly of the first ~200 modules.Comment: 5 pages, 7 figures, Vertex200
Qualification Procedures of the CMS Pixel Barrel Modules
The CMS pixel barrel system will consist of three layers built of about 800
modules. One module contains 66560 readout channels and the full pixel barrel
system about 48 million channels. It is mandatory to test each channel for
functionality, noise level, trimming mechanism, and bump bonding quality.
Different methods to determine the bump bonding yield with electrical
measurements have been developed. Measurements of several operational
parameters are also included in the qualification procedure. Among them are
pixel noise, gains and pedestals. Test and qualification procedures of the
pixel barrel modules are described and some results are presented.Comment: 7 Pages, 7 Figures. Contribution to Pixel 2005, September 5-8, 2005,
Bonn, Germna
CMS Barrel Pixel Detector Overview
The pixel detector is the innermost tracking device of the CMS experiment at
the LHC. It is built from two independent sub devices, the pixel barrel and the
end disks. The barrel consists of three concentric layers around the beam pipe
with mean radii of 4.4, 7.3 and 10.2 cm. There are two end disks on each side
of the interaction point at 34.5 cm and 46.5 cm. This article gives an overview
of the pixel barrel detector, its mechanical support structure, electronics
components, services and its expected performance.Comment: Proceedings of Vertex06, 15th International Workshop on Vertex
Detector
Palytoxin acts on Na(+),K (+)-ATPase but not nongastric H(+),K (+)-ATPase
Palytoxin (PTX) opens a pathway for ions to pass through Na,K-ATPase. We investigate here whether PTX also acts on nongastric H,K-ATPases. The following combinations of cRNA were expressed in Xenopus laevis oocytes: Bufo marinus bladder H,K-ATPase alpha(2)- and Na,K-ATPase beta(2)-subunits; Bufo Na,K-ATPase alpha(1)- and Na,K-ATPase beta(2)-subunits; and Bufo Na,K-ATPase beta(2)-subunit alone. The response to PTX was measured after blocking endogenous Xenopus Na,K-ATPase with 10 microM ouabain. Functional expression was confirmed by measuring (86)Rb uptake. PTX (5 nM: ) produced a large increase of membrane conductance in oocytes expressing Bufo Na,K-ATPase, but no significant increase occurred in oocytes expressing Bufo H,K-ATPase or in those injected with Bufo beta(2)-subunit alone. Expression of the following combinations of cDNA was investigated in HeLa cells: rat colonic H,K-ATPase alpha(1)-subunit and Na,K-ATPase beta(1)-subunit; rat Na,K-ATPase alpha(2)-subunit and Na,K-ATPase beta(2)-subunit; and rat Na,K-ATPase beta(1)- or Na,K-ATPase beta(2)-subunit alone. Measurement of increases in (86)Rb uptake confirmed that both rat Na,K and H,K pumps were functional in HeLa cells expressing rat colonic HKalpha(1)/NKbeta(1) and NKalpha(2)/NKbeta(2). Whole-cell patch-clamp measurements in HeLa cells expressing rat colonic HKalpha(1)/NKbeta(1) exposed to 100 nM PTX showed no significant increase of membrane current, and there was no membrane conductance increase in HeLa cells transfected with rat NKbeta(1)- or rat NKbeta(2)-subunit alone. However, in HeLa cells expressing rat NKalpha(2)/NKbeta(2), outward current was observed after pump activation by 20 mM K(+) and a large membrane conductance increase occurred after 100 nM PTX. We conclude that nongastric H,K-ATPases are not sensitive to PTX when expressed in these cells, whereas PTX does act on Na,K-ATPase
Observation of non-exponential magnetic penetration profiles in the Meissner state - A manifestation of non-local effects in superconductors
Implanting fully polarized low energy muons on the nanometer scale beneath
the surface of a superconductor in the Meissner state enabled us to probe the
evanescent magnetic field profile B(z)(0<z<=200nm measured from the surface).
All the investigated samples [Nb: kappa \simeq 0.7(2), Pb: kappa \simeq 0.6(1),
Ta: kappa \simeq 0.5(2)] show clear deviations from the simple exponential B(z)
expected in the London limit, thus revealing the non-local response of these
superconductors. From a quantitative analysis within the Pippard and BCS models
the London penetration depth lambda_L is extracted. In the case of Pb also the
clean limit coherence length xi0 is obtained. Furthermore we find that the
temperature dependence of the magnetic penetration depth follows closely the
two-fluid expectation 1/lambda^2 \propto 1-(T/T_c)^4. While B(z) for Nb and Pb
are rather well described within the Pippard and BCS models, for Ta this is
only true to a lesser degree. We attribute this discrepancy to the fact that
the superfluid density is decreased by approaching the surface on a length
scale xi0. This effect, which is not taken self-consistently into account in
the mentioned models, should be more pronounced in the lowest kappa regime
consistently with our findings.Comment: accepted in PRB 14 pages, 17 figure
Magnetoresistance Anisotropy of Polycrystalline Cobalt Films: Geometrical-Size- and Domain-Effects
The magnetoresistance (MR) of 10 nm to 200 nm thin polycrystalline Co-films,
deposited on glass and insulating Si(100), is studied in fields up to 120 kOe,
aligned along the three principal directions with respect to the current:
longitudinal, transverse (in-plane), and polar (out-of-plane). At technical
saturation, the anisotropic MR (AMR) in polar fields turns out to be up to
twice as large as in transverse fields, which resembles the yet unexplained
geometrical size-effect (GSE), previously reported for Ni- and Permalloy films.
Upon increasing temperature, the polar and transverse AMR's are reduced by
phonon-mediated sd-scattering, but their ratio, i.e. the GSE remains unchanged.
Basing on Potters's theory [Phys.Rev.B 10, 4626(1974)], we associate the GSE
with an anisotropic effect of the spin-orbit interaction on the sd-scattering
of the minority spins due to a film texture. Below magnetic saturation, the
magnitudes and signs of all three MR's depend significantly on the domain
structures depicted by magnetic force microscopy. Based on hysteresis loops and
taking into account the GSE within an effective medium approach, the three MR's
are explained by the different magnetization processes in the domain states.
These reveal the importance of in-plane uniaxial anisotropy and out-of-plane
texture for the thinnest and thickest films, respectively.Comment: 10 pages, 9 figure
- …