1,613 research outputs found

    Instability of the one-texture universe

    Get PDF
    The one-texture universe, introduced by Davis in 1987, is a homogeneous mapping of a scalar field with an S^3 vacuum into a closed universe. It has long been known to mathematicians that such solutions, although static, are unstable. We show by explicit construction that there are four degenerate lowest modes which are unstable, corresponding to collapse of the texture towards a single point, in the case where gravitational back reaction is neglected. We discuss the instability time scale in both static and expanding space-times; in the latter case it is of order of the present age of the universe, suggesting that, though unstable, the one-texture universe could survive to the present. The cosmic microwave background constrains the initial magnitude of this unstable perturbation to be less than ∌10^-3

    Where are the Hedgehogs in Nematics?

    Full text link
    In experiments which take a liquid crystal rapidly from the isotropic to the nematic phase, a dense tangle of defects is formed. In nematics, there are in principle both line and point defects (``hedgehogs''), but no point defects are observed until the defect network has coarsened appreciably. In this letter the expected density of point defects is shown to be extremely low, approximately 10−810^{-8} per initially correlated domain, as result of the topology (specifically, the homology) of the order parameter space.Comment: 6 pages, latex, 1 figure (self-unpacking PostScript)

    Correlations in Cosmic String Networks

    Full text link
    We investigate scaling and correlations of the energy and momentum in an evolving network of cosmic strings in Minkowski space. These quantities are of great interest, as they must be understood before accurate predictions for the power spectra of the perturbations in the matter and radiation in the early Universe can be made. We argue that Minkowski space provides a reasonable approximation to a Friedmann background for string dynamics and we use our results to construct a simple model of the network, in which it is considered to consist of randomly placed segments moving with random velocities. This model works well in accounting for features of the two-time correlation functions, and even better for the power spectra.Comment: 20pp Plain LaTeX, 11 EPS figures, uses epsf.st

    Smooth metrics for snapping strings

    Get PDF
    We construct two possible metrics for abelian Higgs vortices with ends on black holes. We show how the detail of the vortex fields smooths out the nodal singularities which exist in the idealized metrics. A corollary is that apparently topologically stable strings might be able to split by black hole pair production. We estimate the rate per unit length by reference to related Ernst and C-metric instantons, concluding that it is completely negligible for GUT-scale strings. The estimated rate for macroscopic superstrings is much higher, although still extremely small, unless there is an early phase of strong coupling

    Detecting and distinguishing topological defects in future data from the CMBPol satellite

    Get PDF
    The proposed CMBPol mission will be able to detect the imprint of topological defects on the CMB provided the contribution is sufficiently strong. We quantify the detection threshold for cosmic strings and for textures, and analyze the satellite's ability to distinguish between these different types of defects. We also assess the level of danger of misidentification of a defect signature as from the wrong defect type or as an effect of primordial gravitational waves. A 0.002 fractional contribution of cosmic strings to the CMB temperature spectrum at multipole ten, and similarly a 0.001 fractional contribution of textures, can be detected and correctly identified at the 3 level. We also confirm that a tensor contribution of r=0.0018 can be detected at over 3, in agreement with the CMBPol mission concept study. These results are supported by a model selection analysis

    Strictly Anomaly Mediated Supersymmetry Breaking

    Full text link
    We consider an MSSM extension with anomaly mediation as the source of supersymmetry-breaking, and a U(1) symmetry which solves the tachyonic slepton problem, and introduces both the see-saw mechanism for neutrino masses, and the Higgs mu-term. We compare its spectra with those from so-called minimal anomaly mediated supersymmetry breaking. We find a Standard Model-like Higgs of mass 125 GeV with a gravitino mass of 140 TeV and tan(beta)=16. However, the muon anomalous magnetic moment is 3 sigma away from the experimental value. The model naturally produces a period of hybrid inflation, which can exit to a false vacuum characterised by large Higgs vevs, reaching the true ground state after a period of thermal inflation. The scalar spectral index is reduced to approximately 0.975, and the correct abundance of neutralino dark matter can be produced by decays of thermally-produced gravitinos, provided the gravitino mass (and hence the Higgs mass) is high. Naturally light cosmic strings are produced, satisfying bounds from the Cosmic Microwave Background. The complementary pulsar timing and cosmic ray bounds require that strings decay primarily via loops into gravitational waves. Unless the loops are extremely small, the next generation pulsar timing array will rule out or detect the string-derived gravitational radiation background in this model.Comment: 38 pages, 1 figure. Discussion of 125GeV Higgs possibility, and of U(1) decoupling limi

    CMB power spectra from cosmic strings: predictions for the Planck satellite and beyond

    Get PDF
    We present a significant improvement over our previous calculations of the cosmic string contribution to cosmic microwave background (CMB) power spectra, with particular focus on sub-WMAP angular scales. These smaller scales are relevant for the now-operational Planck satellite and additional sub-orbital CMB projects that have even finer resolutions. We employ larger Abelian Higgs string simulations than before and we additionally model and extrapolate the statistical measures from our simulations to smaller length scales. We then use an efficient means of including the extrapolations into our Einstein-Boltzmann calculations in order to yield accurate results over the multipole range 2 < l 3000 in the case of the temperature power spectrum, which then allows cautious extrapolation to even smaller scales. We find that a string contribution to the temperature power spectrum making up 10% of power at l=10 would be larger than the Silk-damped primary adiabatic contribution for l > 3500. Astrophysical contributions such as the Sunyaev-Zeldovich effect also become important at these scales and will reduce the sensitivity to strings, but these are potentially distinguishable by their frequency-dependence.Comment: 18 pages, 16 figure

    Universality and Critical Phenomena in String Defect Statistics

    Get PDF
    The idea of biased symmetries to avoid or alleviate cosmological problems caused by the appearance of some topological defects is familiar in the context of domain walls, where the defect statistics lend themselves naturally to a percolation theory description, and for cosmic strings, where the proportion of infinite strings can be varied or disappear entirely depending on the bias in the symmetry. In this paper we measure the initial configurational statistics of a network of string defects after a symmetry-breaking phase transition with initial bias in the symmetry of the ground state. Using an improved algorithm, which is useful for a more general class of self-interacting walks on an infinite lattice, we extend the work in \cite{MHKS} to better statistics and a different ground state manifold, namely RP2\R P^2, and explore various different discretisations. Within the statistical errors, the critical exponents of the Hagedorn transition are found to be quite possibly universal and identical to the critical exponents of three-dimensional bond or site percolation. This improves our understanding of the percolation theory description of defect statistics after a biased phase transition, as proposed in \cite{MHKS}. We also find strong evidence that the existence of infinite strings in the Vachaspati Vilenkin algorithm is generic to all (string-bearing) vacuum manifolds, all discretisations thereof, and all regular three-dimensional lattices.Comment: 62 pages, plain LaTeX, macro mathsymb.sty included, figures included. also available on http://starsky.pcss.maps.susx.ac.uk/groups/pt/preprints/96/96011.ps.g

    Scaling in Numerical Simulations of Domain Walls

    Get PDF
    We study the evolution of domain wall networks appearing after phase transitions in the early Universe. They exhibit interesting dynamical scaling behaviour which is not yet well understood, and are also simple models for the more phenomenologically acceptable string networks. We have run numerical simulations in two- and three-dimensional lattices of sizes up to 4096^3. The theoretically predicted scaling solution for the wall area density A ~ 1/t is supported by the simulation results, while no evidence of a logarithmic correction reported in previous studies could be found. The energy loss mechanism appears to be direct radiation, rather than the formation and collapse of closed loops or spheres. We discuss the implications for the evolution of string networks.Comment: 7pp RevTeX, 9 eps files (including six 220kB ones
    • 

    corecore